Advertisement

Tribological Properties of Liquid Milks and Dairy Fat Structured Products

  • Phuong Nguyen
  • Yang Zhu
  • Sangeeta PrakashEmail author
Chapter
  • 115 Downloads

Abstract

Milk lipids exist naturally in bovine and other animal milk, and they play an important role in the chemical & physical properties, sensory characteristics, including nutritional profile of dairy products. In order to understand food texture and sensory behaviour of dairy products especially those in liquid and semi-solid form, the tribometer has attracted a lot of interest since it provides better discrimination for sensory attribute related to fat globule and fat content. The aim of this chapter is to introduce the basic thribology methods for dairy products, summarize the tribological properties of dairy products (milk, yoghurt and cream cheese) and the studies related to the effect of milk fat globule (its size, distribution and population) on the lubrication properties and sensory of the final product.

References

  1. Baier, S., Elmore, D., Guthrie, B., Lindgren, T., Smith, S., & Steinbach, A. (2009). A new tribology device for assessing mouthfeel attributes of foods. In 5th International Symposium on Food Structure and Rheology, ETH Zurich, Zurich, Switzerland, 2009.Google Scholar
  2. Bhushan, B. (1998). Contact mechanics of rough surfaces in tribology: Multiple asperity contact. Tribology Letters, 4, 1–35.CrossRefGoogle Scholar
  3. Butt, H.-J., Graf, K., & Kappl, M. (2004). Friction, lubrication, and Wear. Physics and chemistry of interfaces. Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
  4. Cassin, G., Heinrich, E., & Spikes, H. A. (2001). The influence of surface roughness on the lubrication properties of adsorbing and non-adsorbing biopolymers. Tribology Letters, 11, 95–102.CrossRefGoogle Scholar
  5. Chen, J. (2009). Food oral processing: A review. Food Hydrocolloids, 23, 1–25.CrossRefGoogle Scholar
  6. Chen, J., & Lolivret, L. (2011). The determining role of bolus rheology in triggering a swallowing. Food Hydrocolloids, 25, 325–332.CrossRefGoogle Scholar
  7. Chojnicka-Paszun, A., De Jongh, H. H. J., & De Kruif, C. G. (2012). Sensory perception and lubrication properties of milk: Influence of fat content. International Dairy Journal, 26, 15–22.CrossRefGoogle Scholar
  8. Coutouly, A., Riaublanc, A., Axelos, M., & Gaucher, I. (2014). Effect of heat treatment, final pH of acidification, and homogenization pressure on the texture properties of cream cheese. Dairy Science & Technology, 94, 125–144.CrossRefGoogle Scholar
  9. Debon, S. J. J., Vanhemelrijck, J. G. R., Baier, S. K., & Guthrie, B. D. (2010). Tribology device for assessing mouthfeel attributes of foods. Google Patents.Google Scholar
  10. Dresselhuis, D. M., De Hoog, E. H. A., Cohen Stuart, M. A., & Van Aken, G. A. (2007). Chapter 31: Tribology as a tool to study emulsion behaviour in the mouth. In Food colloids: Self-assembly and material science. The Royal Society of Chemistry.Google Scholar
  11. Dresselhuis, D. M., De Hoog, E. H. A., Cohen Stuart, M. A., Vingerhoeds, M. H., & Van Aken, G. A. (2008). The occurrence of in-mouth coalescence of emulsion droplets in relation to perception of fat. Food Hydrocolloids, 22, 1170–1183.CrossRefGoogle Scholar
  12. Engelen, L., & De Wijk, R. A. (2012). Oral processing and texture perception. In Food oral processing. Wiley-Blackwell.Google Scholar
  13. Giasson, S., Israelachvili, J., & Yoshizawa, H. (1997). Thin film morphology and tribology study of mayonnaise. Journal of Food Science, 62, 640–652.CrossRefGoogle Scholar
  14. ISO. (2009). ISO 22935-2 milk and milk products — Sensory analysis. Part 2: Recommended methods for sensory evaluation (p. 23): ISO and IDF 2009.Google Scholar
  15. Joyner, H. S., Pernell, C. W., & Daubert, C. R. (2014). Impact of formulation and saliva on acid milk gel friction behavior. Journal of Food Science, 79, E867–E880.CrossRefGoogle Scholar
  16. Kokini, J. L. (1987). The physical basis of liquid food texture and texture-taste interactions. Journal of Food Engineering, 6, 51–81.CrossRefGoogle Scholar
  17. Kokini, J. L., & Cussler, E. L. (1983). Predicting the texture of liquid and melting semi-solid foods. Journal of Food Science, 48, 1221–1225.CrossRefGoogle Scholar
  18. Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., et al. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125, 355–368.CrossRefGoogle Scholar
  19. Malone, M. E., Appelqvist, I. A. M., & Norton, I. T. (2003). Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. Food Hydrocolloids, 17, 763–773.CrossRefGoogle Scholar
  20. Michalski, M.-C., Ollivon, M., Briard, V., Leconte, N., & Lopez, C. (2004). Native fat globules of different sizes selected from raw milk: Thermal and structural behavior. Chemistry and Physics of Lipids, 132, 247–261.CrossRefGoogle Scholar
  21. Nguyen, P. T. M., Bhandari, B., & Prakash, S. (2016). Tribological method to measure lubricating properties of dairy products. Journal of Food Engineering, 168, 27–34.CrossRefGoogle Scholar
  22. Nguyen, P. T. M., Kravchuk, O., Bhandari, B., & Prakash, S. (2017). Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocolloids, 72, 90–104.CrossRefGoogle Scholar
  23. Nguyen, P. T. M., Nguyen, T. A. H., Bhandari, B., & Prakash, S. (2016). Comparison of solid substrates to differentiate the lubrication property of dairy fluids by tribological measurement. Journal of Food Engineering, 185, 1–8.CrossRefGoogle Scholar
  24. Ningtyas, D. W., Bhandari, B., Bansal, N., & Prakash, S. (2017). A tribological analysis of cream cheeses manufactured with different fat content. International Dairy Journal, 73, 155–165.CrossRefGoogle Scholar
  25. Prakash, S., Huppertz, T., Karvchuk, O., & Deeth, H. (2010). Ultra-high-temperature processing of chocolate flavoured milk. Journal of Food Engineering, 96, 179–184.CrossRefGoogle Scholar
  26. Prakash, S., Tan, D. D. Y., & Chen, J. (2013). Applications of tribology in studying food oral processing and texture perception. Food Research International, 54, 1627–1635.CrossRefGoogle Scholar
  27. Romeih, E. A., Michaelidou, A., Biliaderis, C. G., & Zerfiridis, G. K. (2002). Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: Chemical, physical and sensory attributes. International Dairy Journal, 12, 525–540.CrossRefGoogle Scholar
  28. Shama, F., & Sherman, P. (1973). Identification of stimuli controlling the sensory evaluation of viscosity II. Oral methods. Journal of Texture Studies, 4, 111–118.CrossRefGoogle Scholar
  29. Sonne, A., Busch-Stockfisch, M., Weiss, J., & Hinrichs, J. (2014). Improved mapping of in-mouth creaminess of semi-solid dairy products by combining rheology, particle size, and tribology data. LWT – Food Science and Technology, 59, 342–347.CrossRefGoogle Scholar
  30. Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2016). Effect of milk fat globule size on the physical functionality of dairy products. Cham, Switzerland: Springer.CrossRefGoogle Scholar
  31. Verhagen, J. V., Rolls, E. T., & Kadohisa, M. (2003). Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. Journal of Neurophysiology, 90, 1514–1525.CrossRefGoogle Scholar
  32. Williams, J. A. (2005). Engineering tribology. New York: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Agriculture and Food Sciences, The University of QueenslandSt LuciaAustralia
  2. 2.ARC Dairy Innovation HubThe University of QueenslandSt LuciaAustralia

Personalised recommendations