Skip to main content

Rheology and Texture of Cream, Milk Fat, Butter and Dairy Fat Spreads

  • Chapter
  • First Online:
Book cover Dairy Fat Products and Functionality

Abstract

‘Rheology’ is a branch of physics concerned with deformation and flow experienced by complex fluids and soft materials such as foods when acted on by forces. Such forces may be ‘naturally’ exerted (e.g. gravitational or interaction forces holding a structure) or deliberately applied during their industrial process, use or consumption. Without exception, rheological phenomena occur in cream, milk fat, butter and dairy blends where it plays essential roles in fundamental, technological and sensorial aspects. Specifically, rheological properties provide information about interaction forces and reversible/irreversible flow of the structural elements of the mesoscopic network. It also relates to the application, “in-use” textural and sensorial properties (e.g. incorrect blending of milk fat fractions leads to macroscopic softening attributed to eutectic formation). Furthermore, it contributes to understanding the effects of formulation and processing. This information is used to establish rheology-structure relationship (e.g. develop models linking shear modulus and microstructure), rheology-texture relationships (e.g. describe firmness in terms of shear compliance), and rheology-formulation-processing relationships (e.g. assess the effect of cooling on firmness), all equally important to understand, control and improve product quality and process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkins, A. G., & Tabor, D. (1965). Plastic indentation in metals with cones. Journal of the Mechanics and Physics of Solids, 13, 149–164.

    Article  Google Scholar 

  • Benbow, J., & Bridgewater, J. (1993). Paste flow and extrusion. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Blair, G. W. S. (1965). On the use of power equations to relate shear-rate to stress in non-Newtonian liquids. Rheologica Acta, 4, 53–55.

    Article  Google Scholar 

  • Brown, J. A., Foegeding, E. A., Daubert, C. R., Drake, M. A., & Gumpertz, M. (2003). Relationships among rheological and sensorial properties of young cheeses. Journal of Dairy Science, 86, 3054–3067.

    Article  CAS  PubMed  Google Scholar 

  • Campanella, O. H., & Peleg, M. (2002). Squeezing flow viscometry for nonelastic semiliquid foods — theory and applications. Critical Reviews in Food Science and Nutrition, 42, 241–264.

    Article  PubMed  Google Scholar 

  • Castro, M., Giles, D. W., Macosko, C. W., & Moaddel, T. (2010). Comparison of methods to measure yield stress of soft solids. Journal of Rheology, 54, 81–94.

    Article  CAS  Google Scholar 

  • Chatraei, S., Macosko, C. W., & Winter, H. H. (1981). Lubricated squeezing flow: A new biaxial extensional rheometer. Journal of Rheology, 25, 433.

    Article  CAS  Google Scholar 

  • Coussot, P. (2007). Rheophysics of pastes: A review of microscopic modelling approaches. Soft Matter, 3, 528–540.

    Article  CAS  Google Scholar 

  • Coussot, P., Tabuteau, H., Chateau, X., Tocquer, L., & Ovarlez, G. (2006). Aging and solid or liquid behavior in pastes. Journal of Rheology, 50, 975.

    Article  CAS  Google Scholar 

  • Davis, J. G. (1937). The rheology of cheese, butter and other milk products. The Journal of Dairy Research, 8, 245–264.

    Article  CAS  Google Scholar 

  • Dealy, J. M., & Wissbrun, K. F. (1999). Melt rheology and its role in plastic processing: Theory and applications. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  • Deman, J. M. (1983). Consistency of fats: A review. Journal of the American Oil Chemists’ Society, 60, 82–87.

    Article  CAS  Google Scholar 

  • DeMan, J. M., & Beers, A. M. (1987). Fat crystal networks: Structure and rheological properties. Journal of Texture Studies, 18, 303–318.

    Article  Google Scholar 

  • DeMan, J. M., Gupta, S., Kloek, M., & Timbers, G. E. (1985). Viscoelastic properties of plastic fat products. Journal of the American Oil Chemists’ Society, 62, 1672–1675.

    Article  Google Scholar 

  • Diener, R. G., & Heldman, D. R. (1968). Methods of determining rheological properties of butter. Transactions of ASAE, 11, 444–0447.

    Article  Google Scholar 

  • Dinkgreve, M., Paredes, J., Denn, M. M., & Bonn, D. (2016). On different ways of measuring “the” yield stress. Journal of Non-Newtonian Fluid Mechanics, 238, 233–241.

    Article  CAS  Google Scholar 

  • Elliot, J. H., & Ganz, A. J. (1971). Modification of food characteristics with cellulose hydrocolloids I: Rheological characterization of an organoleptic property (unctuousness). Journal of Texture Studies, 2, 220–229.

    Article  Google Scholar 

  • Elliot, J. H., & Green, C. E. (1972). Modification of food characteristics with cellulose hydrocolloids II: The modified bingham body-a useful rheological model. Journal of Texture Studies, 3, 194–205.

    Article  Google Scholar 

  • Ewoldt, R. H. (2014). Extremely soft: Design with rheologically complex fluids. Soft Robotics, 1, 12–20.

    Article  Google Scholar 

  • Ewoldt, R. H., & Bharadwaj, N. A. (2013). Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheologica Acta, 52, 201–219.

    Article  CAS  Google Scholar 

  • Ewoldt, R. H., Hosoi, A. E., & McKinley, G. H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 52, 1427–1458.

    Article  CAS  Google Scholar 

  • Ewoldt, R. H., & McKinley, G. H. (2010). On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves. Rheologica Acta, 49, 213–219.

    Article  CAS  Google Scholar 

  • Faber, T. J., Jaishankar, A., & McKinley, G. H. (2017a). Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part II: Measurements on semi-hard cheese. Food Hydrocolloids, 62, 325–339.

    Article  CAS  Google Scholar 

  • Faber, T. J., Jaishankar, A., & McKinley, G. H. (2017b). Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part I: Theoretical framework. Food Hydrocolloids, 62, 311–324.

    Article  CAS  Google Scholar 

  • Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: Wiley.

    Google Scholar 

  • Haighton, A. J. (1959). The measurement of the hardness of margarine and fats with cone penetrometers. Journal of the American Oil Chemists’ Society, 36, 345–348.

    Article  CAS  Google Scholar 

  • Haighton, A. J. (1965). Worksoftening of margarine and shortening. Journal of the American Oil Chemists’ Society, 42, 27–30.

    Article  CAS  PubMed  Google Scholar 

  • Hanck, R. C., & Wall, C. W. (1966). Pressure losses and rheological properties of flowing butter. Journal of Food Science, 31, 534–541.

    Article  Google Scholar 

  • Hayakawa, M., & DeMan, J. M. (1982). Interpretation of cone penetrometer consistency measurements of fats. Journal of Texture Studies, 13, 201–210.

    Article  CAS  Google Scholar 

  • Heertje, I. (1993). Microstructural studies in fat research. Food Structure, 12, 77–94.

    CAS  Google Scholar 

  • Huppertz, T., & Kelly, A. L. (2006). Physical chemistry of milk fat globules. In P. L. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry. Volume 2: Lipids (pp. 173–212). New York, NY: Springer.

    Chapter  Google Scholar 

  • Hyun, K., Wilhelm, M., Klein, C. O., Cho, K. S., Nam, J. G., Ahn, K. H., et al. (2011). A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 36(12), 1697–1753.

    Article  CAS  Google Scholar 

  • Kamyab, I., Chakrabarti, S., & Williams, J. G. (1998). Cutting cheese with wire. Journal of Materials Science, 33, 2763–2770.

    Article  CAS  Google Scholar 

  • Kawanari, M., Hamann, D. D., Swartzel, K. R., & Hansen, A. P. (1981). Rheological and texture studies of butter. Journal of Texture Studies, 12, 483–505.

    Article  Google Scholar 

  • Kim, J., Merger, D., Wilhelm, M., & Helgeson, M.E. (2014). Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. Journal of Rheology, 58, 1359–1390.

    Google Scholar 

  • Kloek, W., van Vliet, T., & Walstra, P. (2005). Large deformation behavior of fat crystal networks. Journal of Texture Studies, 36, 516–543.

    Article  Google Scholar 

  • Lyons, J., & Pyne, G. T. (1933). Factors affecting the body or viscosity of cream and related matters. The Economic Proceedings of the Royal Dublin Society, 2, 461–500.

    CAS  Google Scholar 

  • Macias-Rodriguez, B., & Marangoni, A. G. (2016). Rheological characterization of triglyceride shortenings. Rheologica Acta, 55, 767–779.

    Article  CAS  Google Scholar 

  • Macias-Rodriguez, B. A., & Marangoni, A. A. (2017). Linear and nonlinear rheological behavior of fat crystal networks. Critical Reviews in Food Science and Nutrition, 58(14), 2398–2415.

    Article  PubMed  CAS  Google Scholar 

  • Macosko, C. W. (1994). Shear rheometry: Pressure driven flows. New York, NY: Wiley-VCH, Inc.

    Google Scholar 

  • Marangoni, A. G. (2000). Elasticity of high-volume-fraction fractal aggregate networks: A thermodynamic approach. Physical Review B: Condensed Matter and Materials Physics, 62, 13951–13955.

    Article  CAS  Google Scholar 

  • Marangoni, A. G., & Rousseau, D. (1996). Is plastic fat rheology governed by the fractal nature of the fat crystal network? Journal of the American Oil Chemists’ Society, 73, 991–994.

    Article  CAS  Google Scholar 

  • Mortensen, B. K. (1983). Physical properties and modification of milk fat. In P. F. Fox (Ed.), Developments in dairy chemistry, volume 2: Lipids (pp. 159–194). Essex, UK: Applied Science Publishers Ltd.

    Chapter  Google Scholar 

  • Mortensen, B. K., & Danmark, H. (1981). Firmness of butter measured with a cone penetrometer. Milchwissenschaft, 36, 393–395.

    Google Scholar 

  • Mulder, H. (1953). The consistency of butter. In G. W. Scott Blair (Ed.), Foodstuffs their plasticity, fluidity and consistency (pp. 91–123). New York, NY: Interscience Publishers, Inc..

    Google Scholar 

  • Narine, S. S., & Marangoni, A. G. (1999a). Relating structure of fat crystal networks to mechanical properties: A review. Food Research International, 32, 227–248.

    Article  CAS  Google Scholar 

  • Narine, S. S., & Marangoni, A. G. (1999b). Mechanical and structural model of fractal networks of fat crystals at low deformations. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60, 6991–7000.

    Article  CAS  PubMed  Google Scholar 

  • Narine, S. S., & Marangoni, A. G. (1999c). Microscopic and rheological studies of fat crystal networks. Journal of Crystal Growth, 198–199, 1315–1319.

    Article  Google Scholar 

  • Phipps, L. W. (1969). The interrelationship of the viscosity, fat content and temperature of cream between 40° and 80°C. The Journal of Dairy Research, 36, 417–246.

    Article  Google Scholar 

  • Pipkin, A. C. (1972). Lectures on viscoelasticity theory (2nd ed.). New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • Prentice, J. H. (1984a). Plastic fats. In J. H. Prentice (Ed.), Measurements in the rheology of foodstuffs (pp. 140–152). Essex, UK: Elsevier Ltd.

    Google Scholar 

  • Prentice, J. H. (1984b). Measurements on some fluids and their interpretation. In Measurements in the rheology of foodstuffs (pp. 108–129). Essex, UK: Elsevier.

    Google Scholar 

  • Prentice, J. H. (1984c). Measurements on some fluids and their intepretation. In J. H. Prentice (Ed.), Measurements in the rheology of foodstuffs (pp. 108–129). Essex, UK: Elsevier Ltd.

    Google Scholar 

  • Prentice, J. H. (1993). Rheology and texture of dairy products. Journal of Texture Studies, 3, 415–458.

    Article  Google Scholar 

  • Renou, F., Stellbrink, J., & Petekidis, G. (2010). Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS). Journal of Rheology, 54, 1219.

    Article  CAS  Google Scholar 

  • Rogers, S. A. (2012). A sequence of physical processes determined and quantified in (LAOS): An instantaneous local 2D/3D approach. Journal of Rheology, 56, 1129–1151.

    Article  CAS  Google Scholar 

  • Rohm, H., & Weidinger, K. H. (1993). Rheological behaviour of butter at small deformations. Journal of Texture Studies, 24, 157–172.

    Article  Google Scholar 

  • Rousseau, D., Hill, A. R., & Marangoni, A. G. (1996). Restructuring butterfat through blending and chemical interesterification. 3. Rheology. Journal of the American Oil Chemists’ Society, 73, 983–989.

    Article  CAS  Google Scholar 

  • Scott Blair, G. W. (1938). The spreading capacity of butter. I. The Journal of Dairy Research, 9, 208–214.

    Article  Google Scholar 

  • Scott Blair, G. W. (1947). The role of psychophysics in rheology. Journal of Colloid Science, 2, 21–32.

    Article  Google Scholar 

  • Scott Blair, G. W. (1953). Foodstuffs: Their plasticity, fluidity and consistency. Amsterdam, The Netherlands: North-Holland.

    Google Scholar 

  • Scott Blair, G. W. (1954). The rheology of fats: A review. Journal of the Science of Food and Agriculture, 5, 401–405.

    Article  Google Scholar 

  • Scott Blair, G. W. (1958). Rheology in food research. Advances in Food Research, 8, 1–61.

    Article  Google Scholar 

  • Scott Blair, G. W., & Burnett, J. (1959). On the creep, recovery, relaxation and elastic “memory” of some renneted milk gels. British Journal of Applied Physics, 10, 15–20.

    Article  Google Scholar 

  • Scott Blair, G. W., Hening, J. C., & Wagstaff, A. (1939). The flow of cream through narrow glass tubes. The Journal of Physical Chemistry, 43, 853.

    Article  Google Scholar 

  • Shama, F., & Sherman, P. (1970). The influence of work softening on the viscoelastic properties of butter and margarine. Journal of Texture Studies, 1, 196–205.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, A., & Rizvi, S. S. H. (1995). Viscoelastic properties of butter. Journal of Food Science, 60, 902–905.

    Article  CAS  Google Scholar 

  • Shukla, A., Rizvi, S. S. H., & Bartsch, J. A. (1995). Rheological Characterization of butter using lubricated squeezing flow. Journal of Texture Studies, 26, 313–323.

    Article  Google Scholar 

  • Sone, T. (1961). The rheological behavior and thixotropy of a fatty plastic body. Journal of the Physical Society of Japan, 16, 961–971.

    Article  Google Scholar 

  • Steffe, J. F. (1996). Rheological Methods in Food Processing Engineering. East Lansing, MI: Freeman Press.

    Google Scholar 

  • Suresh, N., & Marangoni, A. G. (2001). Elastic modulus as and indicator of macroscopic hardness of fat crystal networks. LWT- Food Science and Technology, 34, 33–40.

    Article  Google Scholar 

  • Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13, 215–225.

    Article  Google Scholar 

  • Tanaka, M., de Man, J. M., & Voisey, P. W. (1971). Measurement of textural properties of foods with a constant speed cone penetrometer. Journal of Texture Studies, 2, 306–315.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., & Marangoni, A. G. (2007). Modeling the rheological properties and structure of colloidal fat crystal networks. Trends in Food Science and Technology, 18, 474–483.

    Article  CAS  Google Scholar 

  • Thareja, P., Golematis, A., Street, C. B., Wagner, N. J., Vethamuthu, M. S., Hermanson, K. D., et al. (2013). Influence of surfactants on the rheology and stability of crystallizing fatty acid pastes. Journal of the American Oil Chemists’ Society, 90, 273–283.

    Article  CAS  Google Scholar 

  • Thareja, P., Street, C. B., Wagner, N. J., Vethamuthu, M. S., Hermanson, K. D., & Ananthapadmanabhan, K. P. (2011). Development of an in situ rheological method to characterize fatty acid crystallization in complex fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388, 12–20.

    Article  CAS  Google Scholar 

  • Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. Berlin, Germany: Springer-Verlag.

    Book  Google Scholar 

  • Van Aken, G. A., & Visser, K. A. (2000). Firmness and crystallization of milk fat in relation to processing conditions. Journal of Dairy Science, 83, 1919–1932.

    Article  PubMed  Google Scholar 

  • van den Tempel, M. (1961). Mechanical properties of plastic-disperse systems at very small deformations. Journal of Colloid Science, 16, 284–296.

    Article  Google Scholar 

  • van den Tempel, M. (1979). Rheology of concentrated suspensions. Journal of Colloid and Interface Science, 71, 18–20.

    Article  Google Scholar 

  • van Vliet, T., & Walstra, P. (1979). Relationship between viscosity and fat content of milk and cream. Journal of Texture Studies, 11, 65–68.

    Article  Google Scholar 

  • Vithanage, C. R., Grimson, M. J., Smith, B. G., & Wills, P. R. (2011). Creep test observation of viscoelastic failure of edible fats. Journal of Physics Conference Series, 286, 12008.

    Article  CAS  Google Scholar 

  • Vliet, T. (2013). Rheology and fracture mechanics of foods. New York, NY: CRC Press.

    Book  Google Scholar 

  • Vreeker, R., Hoekstra, L. L., den Boer, D. C., & Agterof, W. G. M. (1992). The fractal nature of fat crystal networks. Colloids and Surfaces, 65, 185–189.

    Article  CAS  Google Scholar 

  • Wright, A. J., & Marangoni, A. G. (2006). Crystallization and rheological properties of milk fat. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry. Volume 2: Lipids (pp. 245–291). New York, NY: Springer.

    Chapter  Google Scholar 

  • Wright, a. J., Scanlon, M. G., Hartel, R. W., & Marangoni, A. G. (2001). Rheological properties of milkfat and butter concise reviews in food science. Journal of Food Science, 66, 1056–1071.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macias-Rodriguez, B.A., Marangoni, A.G. (2020). Rheology and Texture of Cream, Milk Fat, Butter and Dairy Fat Spreads. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_10

Download citation

Publish with us

Policies and ethics