Rheology and Texture of Cream, Milk Fat, Butter and Dairy Fat Spreads

  • Braulio A. Macias-Rodriguez
  • Alejandro G. Marangoni


‘Rheology’ is a branch of physics concerned with deformation and flow experienced by complex fluids and soft materials such as foods when acted on by forces. Such forces may be ‘naturally’ exerted (e.g. gravitational or interaction forces holding a structure) or deliberately applied during their industrial process, use or consumption. Without exception, rheological phenomena occur in cream, milk fat, butter and dairy blends where it plays essential roles in fundamental, technological and sensorial aspects. Specifically, rheological properties provide information about interaction forces and reversible/irreversible flow of the structural elements of the mesoscopic network. It also relates to the application, “in-use” textural and sensorial properties (e.g. incorrect blending of milk fat fractions leads to macroscopic softening attributed to eutectic formation). Furthermore, it contributes to understanding the effects of formulation and processing. This information is used to establish rheology-structure relationship (e.g. develop models linking shear modulus and microstructure), rheology-texture relationships (e.g. describe firmness in terms of shear compliance), and rheology-formulation-processing relationships (e.g. assess the effect of cooling on firmness), all equally important to understand, control and improve product quality and process performance.


  1. Atkins, A. G., & Tabor, D. (1965). Plastic indentation in metals with cones. Journal of the Mechanics and Physics of Solids, 13, 149–164.CrossRefGoogle Scholar
  2. Benbow, J., & Bridgewater, J. (1993). Paste flow and extrusion. Oxford, UK: Clarendon Press.Google Scholar
  3. Blair, G. W. S. (1965). On the use of power equations to relate shear-rate to stress in non-Newtonian liquids. Rheologica Acta, 4, 53–55.CrossRefGoogle Scholar
  4. Brown, J. A., Foegeding, E. A., Daubert, C. R., Drake, M. A., & Gumpertz, M. (2003). Relationships among rheological and sensorial properties of young cheeses. Journal of Dairy Science, 86, 3054–3067.PubMedCrossRefGoogle Scholar
  5. Campanella, O. H., & Peleg, M. (2002). Squeezing flow viscometry for nonelastic semiliquid foods — theory and applications. Critical Reviews in Food Science and Nutrition, 42, 241–264.PubMedCrossRefGoogle Scholar
  6. Castro, M., Giles, D. W., Macosko, C. W., & Moaddel, T. (2010). Comparison of methods to measure yield stress of soft solids. Journal of Rheology, 54, 81–94.CrossRefGoogle Scholar
  7. Chatraei, S., Macosko, C. W., & Winter, H. H. (1981). Lubricated squeezing flow: A new biaxial extensional rheometer. Journal of Rheology, 25, 433.CrossRefGoogle Scholar
  8. Coussot, P. (2007). Rheophysics of pastes: A review of microscopic modelling approaches. Soft Matter, 3, 528–540.CrossRefGoogle Scholar
  9. Coussot, P., Tabuteau, H., Chateau, X., Tocquer, L., & Ovarlez, G. (2006). Aging and solid or liquid behavior in pastes. Journal of Rheology, 50, 975.CrossRefGoogle Scholar
  10. Davis, J. G. (1937). The rheology of cheese, butter and other milk products. The Journal of Dairy Research, 8, 245–264.CrossRefGoogle Scholar
  11. Dealy, J. M., & Wissbrun, K. F. (1999). Melt rheology and its role in plastic processing: Theory and applications. New York, NY: Van Nostrand Reinhold.Google Scholar
  12. Deman, J. M. (1983). Consistency of fats: A review. Journal of the American Oil Chemists’ Society, 60, 82–87.CrossRefGoogle Scholar
  13. DeMan, J. M., & Beers, A. M. (1987). Fat crystal networks: Structure and rheological properties. Journal of Texture Studies, 18, 303–318.CrossRefGoogle Scholar
  14. DeMan, J. M., Gupta, S., Kloek, M., & Timbers, G. E. (1985). Viscoelastic properties of plastic fat products. Journal of the American Oil Chemists’ Society, 62, 1672–1675.CrossRefGoogle Scholar
  15. Diener, R. G., & Heldman, D. R. (1968). Methods of determining rheological properties of butter. Transactions of ASAE, 11, 444–0447.CrossRefGoogle Scholar
  16. Dinkgreve, M., Paredes, J., Denn, M. M., & Bonn, D. (2016). On different ways of measuring “the” yield stress. Journal of Non-Newtonian Fluid Mechanics, 238, 233–241.CrossRefGoogle Scholar
  17. Elliot, J. H., & Ganz, A. J. (1971). Modification of food characteristics with cellulose hydrocolloids I: Rheological characterization of an organoleptic property (unctuousness). Journal of Texture Studies, 2, 220–229.CrossRefGoogle Scholar
  18. Elliot, J. H., & Green, C. E. (1972). Modification of food characteristics with cellulose hydrocolloids II: The modified bingham body-a useful rheological model. Journal of Texture Studies, 3, 194–205.CrossRefGoogle Scholar
  19. Ewoldt, R. H. (2014). Extremely soft: Design with rheologically complex fluids. Soft Robotics, 1, 12–20.CrossRefGoogle Scholar
  20. Ewoldt, R. H., & Bharadwaj, N. A. (2013). Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheologica Acta, 52, 201–219.CrossRefGoogle Scholar
  21. Ewoldt, R. H., Hosoi, A. E., & McKinley, G. H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 52, 1427–1458.CrossRefGoogle Scholar
  22. Ewoldt, R. H., & McKinley, G. H. (2010). On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves. Rheologica Acta, 49, 213–219.CrossRefGoogle Scholar
  23. Faber, T. J., Jaishankar, A., & McKinley, G. H. (2017a). Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part II: Measurements on semi-hard cheese. Food Hydrocolloids, 62, 325–339.CrossRefGoogle Scholar
  24. Faber, T. J., Jaishankar, A., & McKinley, G. H. (2017b). Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part I: Theoretical framework. Food Hydrocolloids, 62, 311–324.CrossRefGoogle Scholar
  25. Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: Wiley.Google Scholar
  26. Haighton, A. J. (1959). The measurement of the hardness of margarine and fats with cone penetrometers. Journal of the American Oil Chemists’ Society, 36, 345–348.CrossRefGoogle Scholar
  27. Haighton, A. J. (1965). Worksoftening of margarine and shortening. Journal of the American Oil Chemists’ Society, 42, 27–30.PubMedCrossRefGoogle Scholar
  28. Hanck, R. C., & Wall, C. W. (1966). Pressure losses and rheological properties of flowing butter. Journal of Food Science, 31, 534–541.CrossRefGoogle Scholar
  29. Hayakawa, M., & DeMan, J. M. (1982). Interpretation of cone penetrometer consistency measurements of fats. Journal of Texture Studies, 13, 201–210.CrossRefGoogle Scholar
  30. Heertje, I. (1993). Microstructural studies in fat research. Food Structure, 12, 77–94.Google Scholar
  31. Huppertz, T., & Kelly, A. L. (2006). Physical chemistry of milk fat globules. In P. L. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry. Volume 2: Lipids (pp. 173–212). New York, NY: Springer.CrossRefGoogle Scholar
  32. Hyun, K., Wilhelm, M., Klein, C. O., Cho, K. S., Nam, J. G., Ahn, K. H., et al. (2011). A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 36(12), 1697–1753.CrossRefGoogle Scholar
  33. Kamyab, I., Chakrabarti, S., & Williams, J. G. (1998). Cutting cheese with wire. Journal of Materials Science, 33, 2763–2770.CrossRefGoogle Scholar
  34. Kawanari, M., Hamann, D. D., Swartzel, K. R., & Hansen, A. P. (1981). Rheological and texture studies of butter. Journal of Texture Studies, 12, 483–505.CrossRefGoogle Scholar
  35. Kim, J., Merger, D., Wilhelm, M., & Helgeson, M.E. (2014). Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. Journal of Rheology, 58, 1359–1390.Google Scholar
  36. Kloek, W., van Vliet, T., & Walstra, P. (2005). Large deformation behavior of fat crystal networks. Journal of Texture Studies, 36, 516–543.CrossRefGoogle Scholar
  37. Lyons, J., & Pyne, G. T. (1933). Factors affecting the body or viscosity of cream and related matters. The Economic Proceedings of the Royal Dublin Society, 2, 461–500.Google Scholar
  38. Macias-Rodriguez, B., & Marangoni, A. G. (2016). Rheological characterization of triglyceride shortenings. Rheologica Acta, 55, 767–779.CrossRefGoogle Scholar
  39. Macias-Rodriguez, B. A., & Marangoni, A. A. (2017). Linear and nonlinear rheological behavior of fat crystal networks. Critical Reviews in Food Science and Nutrition, 58(14), 2398–2415.PubMedCrossRefGoogle Scholar
  40. Macosko, C. W. (1994). Shear rheometry: Pressure driven flows. New York, NY: Wiley-VCH, Inc.Google Scholar
  41. Marangoni, A. G. (2000). Elasticity of high-volume-fraction fractal aggregate networks: A thermodynamic approach. Physical Review B: Condensed Matter and Materials Physics, 62, 13951–13955.CrossRefGoogle Scholar
  42. Marangoni, A. G., & Rousseau, D. (1996). Is plastic fat rheology governed by the fractal nature of the fat crystal network? Journal of the American Oil Chemists’ Society, 73, 991–994.CrossRefGoogle Scholar
  43. Mortensen, B. K. (1983). Physical properties and modification of milk fat. In P. F. Fox (Ed.), Developments in dairy chemistry, volume 2: Lipids (pp. 159–194). Essex, UK: Applied Science Publishers Ltd.CrossRefGoogle Scholar
  44. Mortensen, B. K., & Danmark, H. (1981). Firmness of butter measured with a cone penetrometer. Milchwissenschaft, 36, 393–395.Google Scholar
  45. Mulder, H. (1953). The consistency of butter. In G. W. Scott Blair (Ed.), Foodstuffs their plasticity, fluidity and consistency (pp. 91–123). New York, NY: Interscience Publishers, Inc..Google Scholar
  46. Narine, S. S., & Marangoni, A. G. (1999a). Relating structure of fat crystal networks to mechanical properties: A review. Food Research International, 32, 227–248.CrossRefGoogle Scholar
  47. Narine, S. S., & Marangoni, A. G. (1999b). Mechanical and structural model of fractal networks of fat crystals at low deformations. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60, 6991–7000.PubMedCrossRefGoogle Scholar
  48. Narine, S. S., & Marangoni, A. G. (1999c). Microscopic and rheological studies of fat crystal networks. Journal of Crystal Growth, 198–199, 1315–1319.CrossRefGoogle Scholar
  49. Phipps, L. W. (1969). The interrelationship of the viscosity, fat content and temperature of cream between 40° and 80°C. The Journal of Dairy Research, 36, 417–246.CrossRefGoogle Scholar
  50. Pipkin, A. C. (1972). Lectures on viscoelasticity theory (2nd ed.). New York, NY: Springer-Verlag.CrossRefGoogle Scholar
  51. Prentice, J. H. (1984a). Plastic fats. In J. H. Prentice (Ed.), Measurements in the rheology of foodstuffs (pp. 140–152). Essex, UK: Elsevier Ltd.Google Scholar
  52. Prentice, J. H. (1984b). Measurements on some fluids and their interpretation. In Measurements in the rheology of foodstuffs (pp. 108–129). Essex, UK: Elsevier.Google Scholar
  53. Prentice, J. H. (1984c). Measurements on some fluids and their intepretation. In J. H. Prentice (Ed.), Measurements in the rheology of foodstuffs (pp. 108–129). Essex, UK: Elsevier Ltd.Google Scholar
  54. Prentice, J. H. (1993). Rheology and texture of dairy products. Journal of Texture Studies, 3, 415–458.CrossRefGoogle Scholar
  55. Renou, F., Stellbrink, J., & Petekidis, G. (2010). Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS). Journal of Rheology, 54, 1219.CrossRefGoogle Scholar
  56. Rogers, S. A. (2012). A sequence of physical processes determined and quantified in (LAOS): An instantaneous local 2D/3D approach. Journal of Rheology, 56, 1129–1151.CrossRefGoogle Scholar
  57. Rohm, H., & Weidinger, K. H. (1993). Rheological behaviour of butter at small deformations. Journal of Texture Studies, 24, 157–172.CrossRefGoogle Scholar
  58. Rousseau, D., Hill, A. R., & Marangoni, A. G. (1996). Restructuring butterfat through blending and chemical interesterification. 3. Rheology. Journal of the American Oil Chemists’ Society, 73, 983–989.CrossRefGoogle Scholar
  59. Scott Blair, G. W. (1938). The spreading capacity of butter. I. The Journal of Dairy Research, 9, 208–214.CrossRefGoogle Scholar
  60. Scott Blair, G. W. (1947). The role of psychophysics in rheology. Journal of Colloid Science, 2, 21–32.CrossRefGoogle Scholar
  61. Scott Blair, G. W. (1953). Foodstuffs: Their plasticity, fluidity and consistency. Amsterdam, The Netherlands: North-Holland.Google Scholar
  62. Scott Blair, G. W. (1954). The rheology of fats: A review. Journal of the Science of Food and Agriculture, 5, 401–405.CrossRefGoogle Scholar
  63. Scott Blair, G. W. (1958). Rheology in food research. Advances in Food Research, 8, 1–61.CrossRefGoogle Scholar
  64. Scott Blair, G. W., & Burnett, J. (1959). On the creep, recovery, relaxation and elastic “memory” of some renneted milk gels. British Journal of Applied Physics, 10, 15–20.CrossRefGoogle Scholar
  65. Scott Blair, G. W., Hening, J. C., & Wagstaff, A. (1939). The flow of cream through narrow glass tubes. The Journal of Physical Chemistry, 43, 853.CrossRefGoogle Scholar
  66. Shama, F., & Sherman, P. (1970). The influence of work softening on the viscoelastic properties of butter and margarine. Journal of Texture Studies, 1, 196–205.PubMedCrossRefGoogle Scholar
  67. Shukla, A., & Rizvi, S. S. H. (1995). Viscoelastic properties of butter. Journal of Food Science, 60, 902–905.CrossRefGoogle Scholar
  68. Shukla, A., Rizvi, S. S. H., & Bartsch, J. A. (1995). Rheological Characterization of butter using lubricated squeezing flow. Journal of Texture Studies, 26, 313–323.CrossRefGoogle Scholar
  69. Sone, T. (1961). The rheological behavior and thixotropy of a fatty plastic body. Journal of the Physical Society of Japan, 16, 961–971.CrossRefGoogle Scholar
  70. Steffe, J. F. (1996). Rheological Methods in Food Processing Engineering. East Lansing, MI: Freeman Press.Google Scholar
  71. Suresh, N., & Marangoni, A. G. (2001). Elastic modulus as and indicator of macroscopic hardness of fat crystal networks. LWT- Food Science and Technology, 34, 33–40.CrossRefGoogle Scholar
  72. Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13, 215–225.CrossRefGoogle Scholar
  73. Tanaka, M., de Man, J. M., & Voisey, P. W. (1971). Measurement of textural properties of foods with a constant speed cone penetrometer. Journal of Texture Studies, 2, 306–315.PubMedCrossRefGoogle Scholar
  74. Tang, D., & Marangoni, A. G. (2007). Modeling the rheological properties and structure of colloidal fat crystal networks. Trends in Food Science and Technology, 18, 474–483.CrossRefGoogle Scholar
  75. Thareja, P., Golematis, A., Street, C. B., Wagner, N. J., Vethamuthu, M. S., Hermanson, K. D., et al. (2013). Influence of surfactants on the rheology and stability of crystallizing fatty acid pastes. Journal of the American Oil Chemists’ Society, 90, 273–283.CrossRefGoogle Scholar
  76. Thareja, P., Street, C. B., Wagner, N. J., Vethamuthu, M. S., Hermanson, K. D., & Ananthapadmanabhan, K. P. (2011). Development of an in situ rheological method to characterize fatty acid crystallization in complex fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388, 12–20.CrossRefGoogle Scholar
  77. Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
  78. Van Aken, G. A., & Visser, K. A. (2000). Firmness and crystallization of milk fat in relation to processing conditions. Journal of Dairy Science, 83, 1919–1932.CrossRefPubMedGoogle Scholar
  79. van den Tempel, M. (1961). Mechanical properties of plastic-disperse systems at very small deformations. Journal of Colloid Science, 16, 284–296.CrossRefGoogle Scholar
  80. van den Tempel, M. (1979). Rheology of concentrated suspensions. Journal of Colloid and Interface Science, 71, 18–20.CrossRefGoogle Scholar
  81. van Vliet, T., & Walstra, P. (1979). Relationship between viscosity and fat content of milk and cream. Journal of Texture Studies, 11, 65–68.CrossRefGoogle Scholar
  82. Vithanage, C. R., Grimson, M. J., Smith, B. G., & Wills, P. R. (2011). Creep test observation of viscoelastic failure of edible fats. Journal of Physics Conference Series, 286, 12008.CrossRefGoogle Scholar
  83. Vliet, T. (2013). Rheology and fracture mechanics of foods. New York, NY: CRC Press.CrossRefGoogle Scholar
  84. Vreeker, R., Hoekstra, L. L., den Boer, D. C., & Agterof, W. G. M. (1992). The fractal nature of fat crystal networks. Colloids and Surfaces, 65, 185–189.CrossRefGoogle Scholar
  85. Wright, A. J., & Marangoni, A. G. (2006). Crystallization and rheological properties of milk fat. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry. Volume 2: Lipids (pp. 245–291). New York, NY: Springer.CrossRefGoogle Scholar
  86. Wright, a. J., Scanlon, M. G., Hartel, R. W., & Marangoni, A. G. (2001). Rheological properties of milkfat and butter concise reviews in food science. Journal of Food Science, 66, 1056–1071.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Braulio A. Macias-Rodriguez
    • 1
  • Alejandro G. Marangoni
    • 1
  1. 1.Department of Food ScienceUniversity of GuelphGuelphCanada

Personalised recommendations