Advertisement

Manipulation of Dietary and Physiological Factors on Composition and Physicochemical Characteristics of Milk Fat

  • Lars WikingEmail author
  • Mette K. Larsen
  • Martin R. Weisbjerg
Chapter
  • 120 Downloads

Abstract

Fatty acids (FA) in milk origin partly from FA in the feed and partly from de novo synthesis in the mammary gland, commonly with half from feed and half from de novo synthesis. De novo synthesized FA are generally short or medium chain length, maximum C16, and are saturated. Milk FA originating from feed will mirror the feed ration FA according to chain length; however, due to rumen microbial biohydrogenation, the feed FA supplied to the mammary gland will be much more saturated and contain trans and conjugated linoleic acid (CLA) intermediates from the rumen biohydrogenation or later desaturation in the mammary glands. The proportion of milk FA from the two sources can deviate considerably from the half-half, depending mainly on FA supply via the feed but also on nutrient supply for the de novo synthesis, and on FA supply/demand from mobilisation/deposition.

References

  1. Alstrup, L., Weisbjerg, M. R., Hymøller, L., Larsen, M. K., Lund, P., & Nielsen, M. O. (2014). Milk production response to varying protein supply is independent of forage digestibility in dairy cows. Journal of Dairy Science, 97, 4412–4422.PubMedCrossRefGoogle Scholar
  2. Altenhofer, C., Holzmüller, W., Wolfertstetter, F., Wolfschoon, R. D., Kulozik, U., Pfaffl, M. W., et al. (2015). Temporal variation of milk fat globule diameter, fat and cholesterol content and milk epithelial cell gene expression in dairy cows. International Journal of Dairy Technology, 68(4), 519–526.CrossRefGoogle Scholar
  3. Bauman, D. E., Mather, I. H., Wall, R. J., & Lock, A. L. (2006). Major advances associated with the biosynthesis of milk. Journal of Dairy Science, 89, 1235–1243.PubMedCrossRefGoogle Scholar
  4. Bertram, H. C., Wiking, L., Nielsen, J. H., & Andersen, H. J. (2005). Direct measurement of phase transitions in milk fat during cooling of cream - A low-field NMR approach. International Dairy Journal, 15, 1056–1063.CrossRefGoogle Scholar
  5. Blans, K., Hansen, M. S., Sørensen, L. V., Hvam, M. L., Howard, K. A., Möller, A., et al. (2017). Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. Journal of Extracellular Vesicles, 6, 1294340.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Briard, V., Leconte, N., Michel, F., & Michalski, M. C. (2003). The fatty acid composition of small and large naturally occurring milk fat globules. European Journal of Lipid Science and Technology, 105, 677–682.CrossRefGoogle Scholar
  7. Buldo, P., Larsen, M. K., & Wiking, L. (2013). Multivariate data analysis for finding the relevant fatty acids contributing to the melting fractions of cream. Journal of Science and Food Agriculture, 93, 1620–1625.CrossRefGoogle Scholar
  8. Coppa, M., Verdier-Metz, I., Ferlay, A., Pradel, P., Didienne, R., Farruggia, A., et al. (2011). Effect of different grazing systems on upland pastures compared with hay diet on cheese sensory properties evaluated at different ripening times. International Dairy Journal, 21, 815–822.CrossRefGoogle Scholar
  9. Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L., & Peyraud, J. L. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science, 89, 1956–1969.PubMedCrossRefGoogle Scholar
  10. Couvreur, S., Hurtaud, C., Marnet, P. G., Faverdin, P., & Peyraud, J. L. (2007). Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. Journal of Dairy Science, 90(1), 392–403.PubMedCrossRefGoogle Scholar
  11. De Vries, M., Debruyne, L., & Aarts, F. (2013). Sustainability of dairy farming and the implementation of EU environmental directives in the northwest of Europa. Wageningen, The Netherlands: Dairyman.Google Scholar
  12. Dickow, J. A., Larsen, L. B., Hammershøj, M., & Wiking, L. (2011). Cooling causes changes in the distribution of lipoprotein lipase and milk fat globule membrane proteins between the skim milk and cream phase. Journal of Dairy Science, 94, 646–656.PubMedCrossRefGoogle Scholar
  13. Fearon, A. M., Mayne, C. S., Beattie, J. A. M., & Bruce, D. W. (2004). Effect of level of oil inclusion in the diet of dairy cows at pasture on animal performance and milk composition and properties. Journal of Science and Food Agriculture, 84, 497–504.CrossRefGoogle Scholar
  14. Fleming, M. G. (1979). Lipolysis in bovine milk as affected by mechanical and temperature activation – a review. Irish Journal of Food Science and Technology, 3, 111–129.Google Scholar
  15. Harfoot, C. G., & Hazlewood, G. P. (1997). Lipid metabolism in the rumen. In P. N. Hobson & C. S. Stewart (Eds.), The rumen microbial ecosystem (pp. 382–426). London, UK: Chapman & Hall.CrossRefGoogle Scholar
  16. Harvatine, K. J., Boisclair, Y. R., & Bauman, D. E. (2009). Recent advances in the regulation of milk fat synthesis. Animal, 3, 40–54.PubMedCrossRefGoogle Scholar
  17. Havemose, M. S., Weisbjerg, M. R., Bredie, W. L. P., & Nielsen, J. H. (2004). Influence of feeding different types of roughage on the oxidative stability of milk. International Dairy Journal, 14, 563–570.CrossRefGoogle Scholar
  18. Hymøller, L., Alstrup, L., Larsen, M. K., Lund, P., & Weisbjerg, M. R. (2014). High quality forage can replace concentrate when cows enter deposition phase without negative consequences for milk production. Journal of Dairy Science, 97, 4433–4443.PubMedCrossRefGoogle Scholar
  19. Jensen, S. K., & Nielsen, K. N. (1996). Distribution of tocopherols, retinol, ß-carotene and fatty acids among fat globule membrane and fat globule core in cow milk. The Journal of Dairy Research, 63, 565–574.PubMedCrossRefGoogle Scholar
  20. Klei, L. R., Lynch, J. M., Barbano, D. M., Oltenacu, P. A., Lednor, A. J., & Bandler, D. K. (1997). Influence of milking three times a day on milk quality. Journal of Dairy Science, 80, 427–436.PubMedCrossRefGoogle Scholar
  21. Kristensen, T., Jensen, C., Østergaard, S., Weisbjerg, M. R., Aaes, O., & Nielsen, N. (2015). Feeding, production, and efficiency of Holstein-Friesian, Jersey, and mixed-breed lactating dairy cows in commercial Danish herds. Journal of Dairy Science, 98, 263–274.PubMedCrossRefGoogle Scholar
  22. Larsen, M. K., Andersen, K. K., Kaufmann, N., & Wiking, L. (2014). Seasonal variation in the composition and melting behaviour of milk fat. Journal of Dairy Science, 97, 4703–4712.PubMedCrossRefGoogle Scholar
  23. Larsen, M. K., Hymøller, L., Brask-Pedersen, D. B., & Weisbjerg, M. R. (2012). Milk fatty acid composition and production performance of Danish Holstein and Danish Jersey cows fed different amounts of linseed and rapeseed. Journal of Dairy Science, 95, 3569–3578.PubMedCrossRefGoogle Scholar
  24. Larsen, M. K., Kidmose, U., Kristensen, T., Beaumont, P., & Mortensen, G. (2013). Chemical composition and sensory quality of bovine milk as affected by type of forage and proportion of concentrate in the feed ration. Journal of Science and Food Agriculture, 93, 93–99.CrossRefGoogle Scholar
  25. Larsen, T. (2012). Enzymatic-fluorometric quantification of cholesterol in bovine milk. Food Chemistry, 135(3), 1261–1267.PubMedCrossRefGoogle Scholar
  26. Leewenhoeck, M. (1674). More microscopical observations. Philosophical Transactions, 9, 23–24.CrossRefGoogle Scholar
  27. Liu, Z. Q., Logan, A., Cocks, B. G., & Rochfort, S. (2017). Seasonal variation of polar lipid content in bovine milk. Food Chemistry, 237, 865–869.PubMedCrossRefGoogle Scholar
  28. Lopez, C., Briard-BIon, V., & Ménard, O. (2014). Polor lipids, sphingomyelin and long-chain unsaturated fatty acids from the milk fat globule membrane are increased in milks produced by cows fed pasture based diet during spring. Food Research International, 58, 59–68.CrossRefGoogle Scholar
  29. McNamee, B. F., Fearon, A. M., & Pearce, J. (2002). Effect of feeding oilseed supplements to dairy cows on ruminal and milk fatty acid composition. Journal of Science and Food Agriculture, 82, 677–684.CrossRefGoogle Scholar
  30. Mcpherson, A. V., & Kitchen, B. J. (1983). Reviews of the progress of dairy sciences: the bovine milk fat globule membrane – its formation, composition, structure and behaviour in milk and dairy products. The Journal of Dairy Research, 50, 107–133.CrossRefGoogle Scholar
  31. Mesilati-Stahy, R., Mida, K., & Argov-Argaman, N. (2011). Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. Journal of Agricultural and Food Chemistry, 59, 7427–7435.PubMedCrossRefGoogle Scholar
  32. Michalski, M. C., & Briard, V. (2004). Fatty acid composition of total fat from cammembert cheeses with small and large native milk fat globules. Milchwissenschaft, 59, 273–277.Google Scholar
  33. Nielsen, N. I., Larsen, T., Bjerring, M., & Ingvardtsen, K. L. (2005). Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents. Journal of Dairy Science, 88, 3186–3200.PubMedCrossRefGoogle Scholar
  34. NorFor. (2017). NorFor feedtable. Retrieved 21 August, 2017, from http://feedstuffs.norfor.info/
  35. O’Mahoney, J. A., Auty, M., & McSweeney, P. L. H. (2005). The manufacture of miniature Cheddar-type cheeses from milks with different fat globule size distributions. The Journal of Dairy Research, 72, 338–348.CrossRefGoogle Scholar
  36. Østergaard, V., Danfær, A., Daugaard, J., Hindhede, J., Thysen, I. (1981). Foderfedtets indflydelse på malkekøernes produktion. Beretning 508, Statens Husdyrbrugsforsøg, Copenhagen, Denmark.Google Scholar
  37. Palmquist, D. L. (2006). Milk fat: Origin of fatty acids and influence of nutritional factors thereon. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry, volume 2: Lipids (3rd ed., pp. 43–92). New York, NY: Springer.CrossRefGoogle Scholar
  38. Palmquist, D. L., & Schanbacher, F. L. (1991). Dietary-fat composition influences fatty-acid compositon of milk-fat globule-membrane in lactating cows. Lipids, 26, 718–722.PubMedCrossRefGoogle Scholar
  39. Petersen, M. B., Søegaard, K., & Jensen, S. K. (2011). Herb feeding increases n-3 and n-6 fatty acids in cow milk. Livestock Science, 141, 90–94.CrossRefGoogle Scholar
  40. Piantoni, P., Lock, A. L., & Allen, M. S. (2013). Palmitic acid increased yields of milk and milk fat and nutrient digestibility across production level of lactating cows. Journal of Dairy Science, 96, 7143–7154.PubMedCrossRefGoogle Scholar
  41. Poulsen, N. A., Gustavsson, F., Glantz, M., Paulsson, M., Larsen, L. B., & Larsen, M. K. (2012). The influence of feed and herd on fatty acid composition in 3 dairy breeds (Danish Holstein, Danish Jersey, and Swedish Red). Journal of Dairy Science, 95, 6362–6371.PubMedCrossRefGoogle Scholar
  42. Rahmatyar, Z., & Wiking, L. (2012). Fatty acid composition and thermal behavior of small and large milk fat globules. Milchwissenschaft, 67, 34–38.Google Scholar
  43. Shingfield, K. J., Bonnet, M., & Scollan, N. D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7, 132–162.PubMedCrossRefGoogle Scholar
  44. Smet, K., Coudijzer, K., Fredrick, E., De Campeneere, S., De Block, J., Wouters, J., et al. (2010). Crystallization behavior of milk fat obtained from linseed-fed cows. Journal of Dairy Science, 93, 495–505.PubMedCrossRefGoogle Scholar
  45. Smith, L. M., Bianco, D. H., & Dunkley, W. L. (1977). Composition of milk fat globules with increased linoleic-acid. Journal of the American Oil Chemists Society, 54, 132–137.PubMedCrossRefGoogle Scholar
  46. Stensig, T., Weisbjerg, M. R., & Hvelplund, T. (1998). Digestion and passage kinetics of fibre in dairy cows as affected by the proportion of wheat starch or sucrose in the diet. Acta Agriculturae Scandinavica, Section A — Animal Science, 48, 129–140.CrossRefGoogle Scholar
  47. Stoop, W. M., Bovenhuis, H., Heck, J. M. L., & van Arendonk, J. A. M. (2009). Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cow. Journal of Dairy Science, 92, 1469–1478.PubMedCrossRefGoogle Scholar
  48. Thoma, G., Popp, J., Nutter, D., Shonnard, D., Ulrich, R., Matlock, M., et al. (2013). Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa 2008. International Dairy Journal, 31, S3–S14.CrossRefGoogle Scholar
  49. Thomson, N. A., Van der Poel, W. C., Woolford, M. W., & Auldist, M. J. (2005). Effect of cow diet on free fatty acid concentrations in milk. New Zealand Journal of Agricultural Research, 48(3), 301–310.CrossRefGoogle Scholar
  50. Timm, H., & Patton, S. (1988). Milk fat globules: Fatty acid composition, size and in vivo regulation of fat liquidity. Lipids, 23, 685–689.CrossRefGoogle Scholar
  51. Timms, R. E. (1984). Phase behavior and polymorphism of milk fat, milk fat fractions and fully hardened milk fat. Australian Journal of Dairy Technology, 35, 47–53.Google Scholar
  52. Vlaeminck, B., Fievez, V., Cabrita, A. R. J., Fonseca, A. J. M., & Dewhurst, R. J. (2006). Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology, 131, 389–417.CrossRefGoogle Scholar
  53. Volden, H. (2011). Norfor – The nordic feed evaluation system. In Paper presented at the 62nd Annual Meeting of European Federation of Animal Science (EAAP) Stavanger, Norway, 29 Aug–2 Sep. Publication No. 130 (pp. 41–54). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  54. Wakil, J., Stoops, J. K., & Joshi, V. C. (1983). Fatty acid synthesis and its regulation. Annual Review of Biochemistry, 52, 537–579.PubMedCrossRefGoogle Scholar
  55. Walstra, P. (1969). Studies on milk fat dispersion II. The globule-size distribution of cow’s milk. Netherlands Milk and Dairy Journal, 23, 99–110.Google Scholar
  56. Weisbjerg, M. R., Børsting, C. F., & Hvelplund, T. (1992). Fatty acid metabolism in the digestive tract of cows when tallow is fed in increasing amounts at two feed levels. Acta Agriculturae Scandinavica, 42, 106–114.CrossRefGoogle Scholar
  57. Weisbjerg, M. R., Larsen, M. K., Hymøller, L., Thorhauge, M., Kidmose, U., Nielsen, J. H., et al. (2013). Milk production and composition in Danish Holstein, Danish Red, and Danish Jersey cows supplemented with saturated or unsaturated fat. Livestock Science, 155, 60–70.CrossRefGoogle Scholar
  58. Weisbjerg, M. R., Wiking, L., Kristensen, N. B., & Lund, P. (2008). Effects of supplemental dietary fatty acids on milk yield and fatty acid composition in high and medium yielding cows. The Journal of Dairy Research, 75, 142–152.PubMedCrossRefGoogle Scholar
  59. Wiking, L., Bjorck, L., & Nielsen, J. H. (2003). Influence of feed composition on stability of fat globules during pumping of raw milk. International Dairy Journal, 13, 797–803.CrossRefGoogle Scholar
  60. Wiking, L., Nielsen, J. H., Båvius, A.-K., Edvardsson, A., & Svennersten-Sjaunja, K. (2006). Impact of milking frequencies on the level of free fatty acids in milk, fat globule size and fatty acid composition. Journal of Dairy Science, 89, 1004–1009.PubMedCrossRefGoogle Scholar
  61. Wiking, L., Stagsted, J., Björck, L., & Nielsen, J. H. (2004). Milk fat globule size is affected by fat production in dairy cows. International Dairy Journal, 14, 909–913.CrossRefGoogle Scholar
  62. Wiking, L., Theil, P., Nielsen, J. H., & Sørensen, M. T. (2010). Effect of grazing fresh legumes or feeding silage on enzymes involved in the synthesis of milk fat in dairy. The Journal of Dairy Research, 77, 337–342.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lars Wiking
    • 1
    Email author
  • Mette K. Larsen
    • 1
    • 2
  • Martin R. Weisbjerg
    • 3
  1. 1.Department of Food ScienceAarhus UniversityAarhusDenmark
  2. 2.Arla Foods AmbaVidebaekDenmark
  3. 3.Department of Animal ScienceAarhus UniversityTjeleDenmark

Personalised recommendations