Skip to main content

Soil Carbon Sequestration for Climate Change Mitigation: Some Implications to Egypt

  • Chapter
  • First Online:
Book cover Climate Change Impacts on Agriculture and Food Security in Egypt

Part of the book series: Springer Water ((SPWA))

Abstract

The soil is the largest terrestrial carbon (C) stock, and those factors that affect C retention and release also influence on atmospheric CO2 levels. Soil C sequestration represents about 90% of the total mitigation practices of climate change and about 10% of emission reduction. There is a great concern of soil carbon (C) sequestration and its role in absorbing atmospheric CO2 not only because of its impacts on climate change mitigation but also because of its positive impacts on the sustainability of crop productivity, soil fertility and soil quality. Cultivation has resulted in considerable loss of soil C due to chemical and biological decomposition of soil organic carbon (SOC), as well as erosion by wind and water. However; in carefully managed croplands, soil C sequestration can be substantial and represents a potentially constructive portion for mitigating the increased levels of atmospheric CO2. There is a general agreement that many agricultural ecosystems have a huge potential to sequester carbon in the soil, which could decrease CO2 concentrations in the air and mitigate its global emissions. Egyptian soils are low in their C content. Thus its potential to sequester C is high. Therefore, good management practices should be considered for enhancing soil C sequestration in Egyptian soils especially in degraded and desert soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ravindranath NH, Ostwald M (2008) Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. In: Advances in global change research, vol 29. Springer Science + Business Media BV

    Google Scholar 

  2. Soleimani A, Hosseini SM, Bavani ARM, Jafari M, Francaviglia R (2017) Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Sci Total Environ 599–600:1646–1657

    Article  CAS  Google Scholar 

  3. Sofi JA, Lone AH, Ganie MA, Dar NA, Bhat SA, Mukhtar M, Dar MA, Ramzan S (2016) Soil microbiological activity and carbon dynamics in the current climate change scenarios: a review. Pedosphere 26(5):577–591. https://doi.org/10.1016/s1002-0160(15)60068-6

    Article  Google Scholar 

  4. Waltman SW, Olson C, West L, Moore A, Thompson J (2010) Preparing a soil organic carbon inventory for the United States using soil surveys and site measurements: why carbon stocks at depth are important. In: 19th world congress of soil science, soil solutions for a changing world

    Google Scholar 

  5. Qiu SJ, Ju XT, Ingwersen J, Qin ZC, Li L, Streck T, Christie P, Zhang FS (2010) Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil Till Res 107:80–87

    Article  Google Scholar 

  6. Jacinthe PA, Lal R, Kimble JM (2001) Organic carbon storage and dynamics in croplands and terrestrial deposits as influenced by subsurface tile drainage. Soil Sci 166(5):322–335

    Article  CAS  Google Scholar 

  7. Pandey D, Agrawal M, Bohra JS, Adhya TK, Bhattacharyya P (2014) Recalcitrant and labile carbon pools in a sub-humid tropical soil under different. Tillage combinations: a case study of rice–wheat system. Soil Till Res 143:116–122. https://doi.org/10.1016/j.still.2014.06.001

    Article  Google Scholar 

  8. Eve MD, Sperow M, Paustian K, Follett RF (2002) National-scale estimation of changes in soil carbon stocks on agricultural lands. Environ Pollut 116:431–438

    Article  CAS  Google Scholar 

  9. Lokupitiya E, Paustian K (2006) Agricultural soil greenhouse gas emissions: a review of national inventory methods. J Environ Qual 35:1413–1427

    Article  CAS  Google Scholar 

  10. Victor DG, Zhou D, Ahmed EHM, Dadhich PK, Olivier JGJ, Rogner H-H, Sheikho K, Yamaguchi M (2014) Introductory chapter. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  11. Geraei DS, Hojati S, Landi A, Cano AF (2016) Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma Reg 7:29–37. https://doi.org/10.1016/j.geodrs.2016.01.001

    Article  Google Scholar 

  12. Nadal-Romero E, Cammeraat E, Pérez-Cardiel E, Lasanta T (2016) How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas? Sci Total Environ 566–567:741–752

    Article  CAS  Google Scholar 

  13. Singh KP, Ghoshal N, Singh S (2009) Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem: influence of organic inputs of varying resource quality. Appl Soil Ecol 42:243–253

    Article  Google Scholar 

  14. Ahirwal J, Maiti SK, Singh AK (2017) Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Sci Total Environ 583:153–162. https://doi.org/10.1016/j.scitotenv.2017.01.043

    Article  CAS  Google Scholar 

  15. West TO, Marland G (2002) Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses. Environ Pollut 116:439–444

    Article  CAS  Google Scholar 

  16. Rolando JL, Dubeux JC, Perez W, Ramirez DA, Turin C, Ruiz-Moreno M, Comerford NB, Mares V, Garcia S, Quiroz R (2017) Soil organic carbon stocks and fractionation under different land uses in the Peruvian high-Andean Puna. Geoderma 307:65–72. https://doi.org/10.1016/j.geoderma.2017.07.037

    Article  CAS  Google Scholar 

  17. Fan J, Ding W, Xiang J, Qin S, Zhang J, Ziadi N (2014) Carbon sequestration in an intensively cultivated sandy loam soil in the North China Plain as affected by compost and inorganic fertilizer application. Geoderma 230–231:22–28. https://doi.org/10.1016/j.geoderma.2014.03.027

    Article  CAS  Google Scholar 

  18. Wu L, Wood Y, Jiang P, Pan G, Lu J, Chang AC, Enloe HA (2008) Carbon sequestration and dynamics of two irrigated agricultural soils in California. Soil Sci Soc Am J 72(3):808–814

    Article  CAS  Google Scholar 

  19. Lim S, Choi W, Chang SX, Arshad MA, Yoon K, Kim H (2017) Soil carbon changes in paddy fields amended with fly ash. Agr Ecosyst Environ 245:11–21. https://doi.org/10.1016/j.agee.2017.03.027

    Article  CAS  Google Scholar 

  20. Fernández JM, Nieto MA, López-de-Sá EG, Gascó G, Méndez A, Plaza C (2014) Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Sci Total Environ 482–483:1–7

    Article  CAS  Google Scholar 

  21. Mandal S, Sarkar B, Bolan N, Novak J, Ok YS, Singh L Van, Swieten L, Singh BP, Kirkham MB, Choppala G, Spokas K, Naidu R (2016) Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Crit Rev Env Sci Technol. https://doi.org/10.1080/10643389.2016.1239975

    Article  Google Scholar 

  22. Li C, Fultz LM, Moore-Kucera J, Acosta-Martínez V, Horita J, Strauss R, Zak J, Calderón F, Weindorf D (2017) Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program. Geoderma 294:80–90. https://doi.org/10.1016/j.geoderma.2017.01.032

    Article  CAS  Google Scholar 

  23. Marín-Spiotta E, Swanston CW, Torn MS, Silver WL, Burton SD (2008) Chemical and mineral control of soil carbon turnover in abandoned tropical pastures. Geoderma 143:49–62

    Article  CAS  Google Scholar 

  24. Oca PCM (2009) Effect of land use, climate and soil structure on soil organic carbon in Costa Rican Ecoregions. Presented in partial fulfillment of the requirements for the Degree Master of Science in the Graduate School of the Ohio State University

    Google Scholar 

  25. Zhu L, Hu N, Zhang Z, Xu J, Tao B, Meng Y (2015) Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice–wheat cropping system. CATENA 135:283–289. https://doi.org/10.1016/j.catena.2015.08.008

    Article  CAS  Google Scholar 

  26. Lozano-García B, Parras-Alcántara L, Brevik EC (2016) Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci Total Environ 544:963–970

    Article  CAS  Google Scholar 

  27. Zhang X, Sun N, Wu L, Xu M, Bingham IJ, Li Z (2016) Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat-maize cropping systems in China. Sci Total Environ 562:247–259

    Article  CAS  Google Scholar 

  28. Zhang H, Wu P, Yin A, Yang X, Zhang M, Gao C (2017) Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: a comparison of multiple linear regressions and the random forest model. Sci Total Environ 592:704–713. https://doi.org/10.1016/j.scitotenv.2017.02.146

    Article  CAS  Google Scholar 

  29. Zhang L, Zhuang Q, He Y, Liu Y, Yu D, Zhao Q, Shi X, Xing S, Wang G (2016) Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China. Geoderma 275:28–39. https://doi.org/10.1016/j.geoderma.2016.04.001

    Article  CAS  Google Scholar 

  30. Liu X, Li L, Qi Z, Han J, Zhu Y (2017) Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China. Sci Total Environ 586:1038–1045

    Article  CAS  Google Scholar 

  31. Wang H, Guan D, Zhang R, Chen Y, Hu Y, Xiao L (2014) Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecol Eng 70:206–211. https://doi.org/10.1016/j.ecoleng.2014.05.027

    Article  Google Scholar 

  32. Lozano-García B, Muñoz-Rojas M, Parras-Alcántara L (2017) Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural área. Sci Total Environ 579:1249–1259

    Article  CAS  Google Scholar 

  33. Guo Y, Amundson R, Gong P, Yu Q (2006) Quantity and spatial variability of soil carbon in the conterminous united states. Soil Sci Soc Am J 70:590–600

    Article  CAS  Google Scholar 

  34. Cheng HH, Kimble JM (2001) Characterization of soil organic carbon pools. In: Lal R, Kimble JM, Follett RF, Stewart BA (2001) Assessment methods for soil carbon. Lewis Publishers, 676pp

    Google Scholar 

  35. Lal R (2009a) Carbon sequestration in saline soils. J Soil Salin Water Qual 1(1–2):30–40

    Google Scholar 

  36. Diaz-Hernandez JL (2010) Is soil carbon storage underestimated? Chemosphere 80:346–349

    Article  CAS  Google Scholar 

  37. Qadir M, Noble AD, Schubert S, Thomas RT, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17:661–676

    Article  Google Scholar 

  38. Luce MS, Ziadi N, Zebarth BJ, Grant CA, Tremblay GF, Gregorich EG (2014) Rapid determination of soil organic matter quality indicators using visible near infrared reflectance spectroscopy. Geoderma 232–234:449–458. https://doi.org/10.1016/j.geoderma.2014.05.023

    Article  CAS  Google Scholar 

  39. Johnson RS, Uriu K (1989) Mineral nutrition. In: Larue JH, Johnson RS (1989) Peaches, plums, and nectarines growing and handling for fresh market. Cooperative extension. University of California. Division of agriculture and natural resources. Publication 3331

    Google Scholar 

  40. Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer Science + Business Media BV, Springer, Netherlands, p 432

    Book  Google Scholar 

  41. Wong VNL, Murphy BW, Koen TB, Greene RSB, Dalal RC (2008) Soil organic carbon stocks in saline and sodic landscapes. Aust J Soil Res 46:378–389

    Article  CAS  Google Scholar 

  42. Jelinski NA, Kucharik CJ (2009) Land-use effects on soil carbon and nitrogen on a U.S. midwestern floodplain. Soil Sci Soc Am J 73(1):217–225

    Article  CAS  Google Scholar 

  43. Wei X, Blanco JA, Jiang H, Kimmins JPH (2012) Effects of nitrogen deposition on carbon sequestration in Chinese fir forest ecosystems. Sci Total Environ 416:351–361

    Article  CAS  Google Scholar 

  44. Paul EA, Morris SJ, Six J, Paustian K, Gregorich EG (2003) Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Sci Soc Am J 67:1620–1628

    Article  CAS  Google Scholar 

  45. Sainju UM, Senwo ZN, Nyakatawa ZN, Tazisong IA, Reddy KC (2008) Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agr Ecosyst Environ 127:234–240

    Article  CAS  Google Scholar 

  46. Wright AL, Hons FM (2004) Soil aggregation and carbon and nitrogen storage under soybean cropping sequences. Soil Sci Soc Am J 68:507–513

    Article  CAS  Google Scholar 

  47. Batjes NH, Dijkshoorn JA (1999) Carbon and nitrogen stocks in the soils of the Amazon region. Geoderma 89:273–286

    Article  Google Scholar 

  48. Baisden WT, Parfitt RL (2007) Bomb 14C enrichment indicates decadal C pool in deep soil? Biogeochemistry 85:59–68

    Article  Google Scholar 

  49. Don A, Schumacher J, Scherer-Lorenzen M, Scholten T, Schulze E (2007) Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks. Geoderma 141:272–282

    Article  CAS  Google Scholar 

  50. Throop HL, Archer SR, Monger HC, Waltman S (2012) When bulk density methods matter: implications for estimating soil organic carbon pools in rocky soils. J Arid Environ 77:66–71

    Article  Google Scholar 

  51. Jarecki MK, Lal R (2005) Soil organic carbon sequestration rates in two long-term no-till experiments in Ohio. Soil Sci 170(4):280–291

    Article  CAS  Google Scholar 

  52. Howard PJA, Loveland PJ, Bradley RI, Dry FT, Howard DM, Howard DC (1995) The carbon content of soil and its geographical distribution in great-Britain. Soil Use Manag 11(1):9–15

    Article  Google Scholar 

  53. Crowe AM, McClean CJ, Cresser MS (2006) Application of genetic algorithms to the robust estimation of soil organic and mineral fraction densities. Environ Model Softw 21(10):1503–1507

    Article  Google Scholar 

  54. Srinivasarao C, Lal R, Kundu S, Babu MBBP, Venkateswarlu B, Singh A (2014) Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Sci Total Environ 487:587–603

    Article  CAS  Google Scholar 

  55. Barré P, Durand H, Chenu C, Meunier P, Montagne D, Castel G, Billiou D, Soucémarianadin L, Cécillon L (2017) Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 285:50–56. https://doi.org/10.1016/j.geoderma.2016.09.029

    Article  CAS  Google Scholar 

  56. Young JL, Spycher G (1979) Water-clispersible soil organic-mineral particles: I. Carbon and nitrogen distribution. Soil Sci Soc Am J 43:324–328

    Article  CAS  Google Scholar 

  57. Su WZ, Liu WJ, Yang R, Chang XX (2009) Changes in soil aggregate, carbon, and nitrogen storages following the conversion of cropland to Alfalfa Forage Land in the Marginal Oasis of Northwest China. Environ Manage 43:1061–1070

    Article  Google Scholar 

  58. Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Env Manag 45:274–283

    Article  Google Scholar 

  59. Nelson PN, Ladd JN, Ades’s JM (1996) Decomposition of 14C-labelled plant material. In: A salt-affected soil. Soil Biol Biochem 28(4/S):433–444

    Google Scholar 

  60. Bot A, Benites J (2005) The importance of soil organic matter-key to drought-resistant soil and sustained food production. FAO Soils Bulletin 80. FAO Land and Plant Nutrition Management Service. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  61. Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within Earthworm Casts. Soil Biol Biochem 37:251–258

    Article  CAS  Google Scholar 

  62. Mathew I, Shimelis H, Mutema M, Chaplot V (2017) What crop type for atmospheric carbon sequestration: results from a global data analysis. Agr Ecosyst Environ 243:34–46. https://doi.org/10.1016/j.agee.2017.04.008

    Article  CAS  Google Scholar 

  63. Zaouche M, Bela L, Vaudour E (2017) Geostatistical mapping of topsoil organic carbon and uncertainty assessment in Western Paris croplands (France). Geoderma Reg 10:126–137. https://doi.org/10.1016/j.geodrs.2017.07.002

    Article  Google Scholar 

  64. Senthilkumar S, Kravchenko AN, Robertson GP (2009) Topography influences management system effects on total soil carbon and nitrogen. Soil Sci Soc Am J 73:2059–2067. https://doi.org/10.2136/sssaj2008.0392

    Article  CAS  Google Scholar 

  65. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  66. Hou R, Ouyang Z, Li Y, Tyler DD, Li F, Wilson GV (2012) Effects of tillage and residue management on soil organic carbon and total nitrogen in the North China Plai. Soil Sci Soc Am J 76(1):1–11

    Article  CAS  Google Scholar 

  67. Lal R, Griffin M, Apt J, Lave L, Morgan MG (2004) Manag Soil Carbon. Science 304(5669):393

    Article  CAS  Google Scholar 

  68. Steenwerth KL, Pierce DL, Carlisle EA, Spencer RGM, Smart DR (2010) A vineyard agroecosystem: disturbance and precipitation affect soil respiration under Mediterranean conditions. Soil Sci Soc Am J 74:231–239

    Article  CAS  Google Scholar 

  69. Elbasiouny H, Abowaly M, Abu_Alkheir A, Gad A (2014) Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. CATENA 01(113):70–78

    Article  CAS  Google Scholar 

  70. Elbasiouny H, Abowaly M, Abu_Alkheir A, Gad A, Elbehiry F (2017) Restoration and sequestration of carbon and nitrogen in degraded northern coastal area in Nile Delta, Egypt for climate change mitigation. J Coast Conserv 21:105–114. https://doi.org/10.1007/s11852-016-0475-3

    Article  Google Scholar 

  71. Elbehiry F, Elbasiouny H, Elhenawy A (2017) Boron: spatial distribution in an area of North Nile Delta, Egypt. Commun Soil Sci Plant Anal 48(3):294–306. https://doi.org/10.1080/00103624.2016.1269795

    Article  CAS  Google Scholar 

  72. Elbehiry F, Mahmoud MA, Negm A (2018) Land use in Egypt’s coastal lakes: opportunities and challenges. In: The handbook of environmental chemistry. Springer, Berlin. https://doi.org/10.1007/698_2018_250

  73. Yan H, Cao M, Liu J, Tao B (2007) Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agr Ecosyst Environ 121:325–335

    Article  CAS  Google Scholar 

  74. Abd El Hadi AH (2004) Country report on Egyptian agriculture. IPI regional workshop on Potassium and Fertigation development in West Asia and North Africa. Rabat, Morocco, 24–28 Nov 2004

    Google Scholar 

  75. Hegazi AM, Afifi MY, EL Shorbagy MA, Elwan AA, El-Demerdashe S (2005) Egyptian national action program to combat desertification. Arab Republic of Egypt, Ministry of Agriculture and Land Reclamation Desert Research Center (DRC)

    Google Scholar 

  76. FAO (2005) Fertilizer use by crop in Egypt. Land and plant nutrition management service land and water development division. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  77. IFOAM (2009) The contribution of organic agriculture to climate change mitigation. With support from European Community, DG Environment

    Google Scholar 

  78. Altieri MA, Koohafkan P (2008) Enduring farms: climate change, smallholders and traditional farming communities. TWN (Third World Network), Penang, Malaysia

    Google Scholar 

  79. Thornley JHM, Cannell MGR (2001) Soil carbon storage response to temperature: An hypothesis. Ann Bot 87:591–598

    Article  CAS  Google Scholar 

  80. Zhang WJ, Wang XJ, Xu MG, Huang SM, Liu H, Peng C (2010) Soil organic carbon dynamics under long-term fertilizations in Arable Land of Northern China. Biogeosciences 7:409–425

    Article  CAS  Google Scholar 

  81. Elbasiouny H (2012) Soil carbon and nitrogen pools inventory in North Delta—Egypt for climate change mitigation. Thesis submitted in partial fulfillment of the requirements for the degree of Ph.D. Faculty of Agriculture, Kafrelsheikh University

    Google Scholar 

  82. Lal R (2009b) Soil carbon sequestration for climate change mitigation and food security. Platinum jubilee celebrations of the Indian society of soil science. Souvenir, 39–46

    Google Scholar 

  83. Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436

    Article  Google Scholar 

  84. Ahmad H, Athar F, Manochehr G (2010) Carbon sequestration under different physiographic and climatic conditions in North Karaj River Basin. In: 19th world congress of soil science, soil solutions for a changing world

    Google Scholar 

  85. He N, Chen Q, Han X, Yu G, Li L (2012) Warming and increased precipitation individually influence soil carbon sequestration of inner Mongolian Grasslands, China. Agr Ecosyst Environ 158:184–191

    Article  Google Scholar 

  86. Lal R (2009c) Soil quality impacts of residue removal for bioethanol production. Soil Till Res 102:233–241

    Article  Google Scholar 

  87. Fahim MA, Hassanein MK, Khalil AA, Abou Hadid AF (2013) Climate change adaptation needs for food security in Egypt. Nat Sci 11(12):68–74

    Google Scholar 

  88. Arnous MO, El-Rayes AE, Green DR (2015) Hydrosalinity and environmental land degradation assessment of the East Nile Delta region, Egypt. J Coast Conserv 19:491–513. https://doi.org/10.1007/s11852-015-0402-z

    Article  Google Scholar 

  89. Eshel G, Fine P, Singer MJ (2007) Total soil carbon and water quality: an implication for carbon sequestration. Soil Sci Soc Am J 71:397–405

    Article  CAS  Google Scholar 

  90. Oelbermann M, Voroney RP (2007) Carbon and nitrogen in a temperate agroforestry system: using stable isotopes as a tool to understand soil dynamics. Ecol Eng 29:342–349

    Article  Google Scholar 

  91. Lal R, Kimble JM, Follet RF, Cole CV (1998) The potential of US cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI

    Google Scholar 

  92. Alvarez R, Russo ME, Prystupa P, Scheiner JD, Blotta L (1998) Soil carbon pools under conventional and no-tillage systems in the Argentine Rolling Pampa. Agron J 90:138–143

    Article  Google Scholar 

  93. Chung H, Grove JH, Six J (2008) Indications for soil carbon saturation in a temperate agroecosystem. Soil Sci Soc Am J 72(4):1132–1139

    Article  CAS  Google Scholar 

  94. Mei Z, Wang GZ, Guangmeng G, Lui H, Linhe W (2007) Estimate soil organic carbon and nitrogen distribution in Huolin Wetland with MODIS data. Remote sensing and modeling of ecosystems for sustainability IV. In: Gao W, Ustin SL (eds) Proceedings of the SPIE, vol 6679, 66790p

    Google Scholar 

  95. Lal R (2002) Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degrad Develop 13:469–478

    Article  Google Scholar 

  96. Li X, Rengel Z, Mapfumo E, Bhupinderpal-Singh. (2007) Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil 290:269–282

    Article  CAS  Google Scholar 

  97. Franzluebber AJ (2002) Soil organic matter stratification ratio as an indicator of soil quality. Soil Till Res 66:95–106

    Article  Google Scholar 

  98. Puget P, Lal R, Izaurralde C, Post M, Owens L (2005) Stock and distribution of total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices. Soil Sci 170(4):256–279

    Article  CAS  Google Scholar 

  99. Lal R (2009d) Soil carbon sequestration for climate change mitigation and food security. Platinum jubilee celebrations of the Indian society of soil science. Souvenir, 39–46

    Google Scholar 

  100. Lenney MP, Woodcock CE, Collins JB, Hamdi H (1996) The status of agricultural lands in Egypt: the use of multitemporal NDVI features derived from landsat TM. Remote Sens Environ 56(1):8–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Elbasiouny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elbasiouny, H., Elbehiry, F. (2020). Soil Carbon Sequestration for Climate Change Mitigation: Some Implications to Egypt. In: Ewis Omran, ES., Negm, A. (eds) Climate Change Impacts on Agriculture and Food Security in Egypt. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-41629-4_8

Download citation

Publish with us

Policies and ethics