Skip to main content

Soils as Driver and Victim of Climate Change in Egypt

  • Chapter
  • First Online:
Climate Change Impacts on Agriculture and Food Security in Egypt

Part of the book series: Springer Water ((SPWA))

  • 2434 Accesses

Abstract

Egypt is a country that foresees to face severe effects owing to climate change. Soil may consider an important source of greenhouse gas emissions (i.e. carbon dioxide, methane and nitrous oxides). The drivers of soil GHG emissions are soil type and composition (i.e. soil texture, pH, soil organic matter (SOM), etc.), soil temperature, moisture, fertilization, soil miss-management (Tillage), rice cultivation and burning of Crop residues. Soil also considered as a victim of climate change. Global warming may induce, depletion of soil organic matter that causes the decline of soil fertility, poor soil water regime, shifting of soil microbiome and soil compaction (i.e. Increase soil compaction, surface sealing and crust formation). Global warming induces also sea level rise (SLR) on soils of Egypt which increase the area of submerged lands in northern Nile Delta and consequently soil salinization. With climate change, more frequent extreme precipitation and drought events are projected which may exacerbate the rate and soil susceptibility to accelerated erosion, salinization and other degradation processes, leading to further carbon losses. In conclusion, this chapter summarizes geographical nature of climate change impacts and the history of flooding rainstorms in Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NOAA-NCEI (2017) National oceanic and atmospheric administration—national centers for environmental information. Global Climate Report, Sept 2017

    Google Scholar 

  2. CO2-Earth (2017) https://www.co2.earth/global-co2-emissions

  3. Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW (2016) Trends in global CO2 emissions: PBL Netherlands Environmental Assessment Agency 2016 Report publication number: 2315. http://edgar.jrc.ec.europa.eu/news_docs/jrc-2016-trends-in-global-co2-emissions-2016-report-103425.pdf

  4. IPCC (Intergovernmental Panel on Climate Change) (2007) Fourth assessment report on climate change: climate change: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  5. CAMPAS (Central Agency for Public Mobilization And Statistics) (2017) Statistical yearbook. Issue no. 108. http://www.capmas.gov.eg/Pages/StaticPages.aspx?page_id=5034

  6. Selim TH (2009) Egypt’s carbon emissions and the kyoto protocol. Egypt, energy and the environment. Adonis & Abbey Ltd

    Google Scholar 

  7. UNFCCC, United Nations Framework Convention on Climate Change (2016) Egypt THIRD national communication

    Google Scholar 

  8. UNFCCC (2017) United Nations Climate Change Conference (“COP23”) Bonn (Germany) from 6–17 November 2017. https://www.carbonbrief.org/cop23-key-outcomes-agreed-un-climate-talks-bonn

  9. EEAA (Egyptian Environmental Affairs Agency) (2016) Egypt third national communication, under the United Nations Framework convention on climate change. EEAA Publications

    Google Scholar 

  10. Koponen HT, Duran CE, Mjanen M, Hytnoen J, Martikainen PJ (2006) Temperature responses of NO and N2O emissions from boreal organic soil. Soil Biol Biochem 38:1779–1787

    Article  CAS  Google Scholar 

  11. Nosalewicz M, Stepniewska Z, Nosalewicz A (2013) Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater. Int Agrophys 27:299–304

    Article  CAS  Google Scholar 

  12. Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36

    Article  CAS  Google Scholar 

  13. Raich JW, Potter CS, Bhagavatti D (2002) Interannua1 variability in global soil respiration, 1980–94. Global Change Biol. 8:800–812

    Article  Google Scholar 

  14. Marland G, Boden TA, Andres RJ (2000) Global, regional and national fossil fuel CO, emissions. In: Trends: a compendium of date on global change. Oak Ridge National Laboratory, U.S. Oak Ridge, Tennessee, USA

    Google Scholar 

  15. Fang Y, Singh B, Singh BP, Krull E (2014) Biochar carbon stability in four contrasting soils. Eur J Soil Sci 65:60–71. https://doi.org/10.1111/ejss.12094

    Article  CAS  Google Scholar 

  16. Sun L, Li L, Chen Z, Wang J, Xiong Z (2014) Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Sci Plant Nutr 60:254–265. https://doi.org/10.1080/00380768.2014.885386

    Article  CAS  Google Scholar 

  17. Xie Z, Xu Y, Liu G, Liu Q, Zhu J, Tu C, Amonette JE, Cadisch G, Yong JWH, Hu S (2013) Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil 370:527–540. https://doi.org/10.1007/s11104-013-1636-x

    Article  CAS  Google Scholar 

  18. Stewart CE, Zheng J, Botte J, Cotrufo MF (2013) Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy 5:153–164. https://doi.org/10.1111/gcbb.12001

    Article  CAS  Google Scholar 

  19. Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P (2016) Biochar properties influencing greenhouse gas emissions in tropical soils differing in texture and mineralogy. J Environ Qual 45:1509–1519. https://doi.org/10.2134/jeq2015.10.0532

    Article  CAS  Google Scholar 

  20. Chen ST, Huang Y, Zou JW (2008) Relationship between nitrous oxide emission and winter wheat production. Biol Fertil Soil (Berlin) 44(7):985–989

    Article  CAS  Google Scholar 

  21. Tan IYS, van Esa HM, Duxburya JM, Melkoniana JJ, Schindelbecka RR, Larry D, Dean-Hivelya GW, Moebiusa BN (2009) Single-event nitrous oxide losses under maize production as affected by soil type, tillage, rotation, and fertilization. Soil Till Res (Amsterdam) 102(1):19–26. https://doi.org/10.1016/j.still.2008.06.005

    Article  Google Scholar 

  22. Neill C, Steudler PA, Garcia-Montiel DC, Melillo JM, Feigl BJ, Piccolo MC, Cerri CC (2005) Rates and controls of nitrous oxide and nitric oxide emissions following conversion of forest to pasture in Rondônia. Nutr Cycl Agroecosys 71:1–15

    Article  CAS  Google Scholar 

  23. Gaillard R, Duval BD, Osterholz WR, Kucharik CJ (2016) Simulated effects of soil texture on nitrous oxide emission factors from corn and soybean agroecosystems in Wisconsin. J Environ Qual 45:1540–1548. https://doi.org/10.2134/jeq2016.03.0112

    Article  CAS  Google Scholar 

  24. Rochette P, Angers DA, Chantigny MH, Bertrand N (2008) Nitrous oxide emissions respond differently to no-till in a loam and a heavy clay soil. Soil Sci Soc Am J 72:1363–1369. https://doi.org/10.2136/sssaj2007.0371

    Article  CAS  Google Scholar 

  25. Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K (2004) Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res 109:d17302. https://doi.org/10.1029/2004JD004590

    Article  CAS  Google Scholar 

  26. Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Phil Trans R Soc B 368:20130126. https://doi.org/10.1098/rstb.2013.0126

    Article  CAS  Google Scholar 

  27. Čuhe J, Šimek M, Laughlin RJ, Bru D, Chèneby D, Watson CJ, Philippot L (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76:1870–1878. https://doi.org/10.1128/AEM.02484-09

    Article  CAS  Google Scholar 

  28. Barton L, Gleeson DB, Maccarone LD, Zúñiga LP, Murphy DV (2013) Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils? Soil Biol Biochem 62:28–35. https://doi.org/10.1016/j.soilbio.2013.02.014

  29. Mørkved PT, Dörsch P, Bakken LR (2007) The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol Biochem 39:2048–2057. https://doi.org/10.1016/j.soilbio.2007.03.006

    Article  CAS  Google Scholar 

  30. Nadeem S, Lars Bakken L, Köster JK, Mørkved PT, Simon N, Dörsch P (2015) Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils. Geophys Res Abstr 17, EGU2015-9790, EGU General Assembly 2015

    Google Scholar 

  31. Gibbons JM, Williamson JC, Williams AP, Withers PJA, Hockley N, Harris IM, Hughes JW, Taylor RL, Jones DL, Healey JR (2014) Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agr Ecosyst Environ 188:48–56

    Article  CAS  Google Scholar 

  32. Wang L, Han Z, Zhang X (2010) Effects of soil pH on CO2 emission from long-term fertilized black soils in Northeastern China. In: Proceedings of conference on environmental pollution and public health 2010 (CEPPH 2010). Wuhan, China, Sept 2010. ISBN: 9781617828089

    Google Scholar 

  33. Samad MS, Biswas A, Bakken LR, Clough TJ, de Klein CAM, Richards KG, Lanigan G, Morales SE (2016) Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci Rep 6. Article number: 35990. http://dx.doi.org/10.1038/srep35990, https://www.nature.com/articles/srep35990#supplementary-information

  34. Luo GJ, Brüggemann N, Wolf B, Gasche R, Grote R, Butterbach-Bahl K (2012) Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Höglwald forest, Germany. Biogeosciences 9:1741–1763. https://doi.org/10.5194/bg-9-1741-2012

    Article  CAS  Google Scholar 

  35. Kirchmann H, Haberhauer G, Kandeler E, Sessitsch A, Gerzabek MH (2004) Effects of level and quality of organic matter input on carbon storage and biological activity in soil: synthesis of a long-term experiment. J Glob Biogeochem Cycles 18:GB4011. https://doi.org/10.1029/2003GB002204

    Article  CAS  Google Scholar 

  36. Li LJ, You MY, Shi HA, Ding XL, Qiao YF (2013) Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. Eur J Soil Biol 55:83–90. https://doi.org/10.1016/j.ejsobi.2012.12.009

    Article  CAS  Google Scholar 

  37. Gattinger A1, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, Scialabba Nel-H, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci USA 109:18226–18231

    Google Scholar 

  38. Gregorich EG, Rochette P, Vanden Bygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Till Res 83:53–72. https://doi.org/10.1016/j.still.2005.02.009

    Article  Google Scholar 

  39. Lynch DH, MacRae R, Martin RC (2011) The carbon and global warming potential Impacts of organic farming: does it have a significant role in an energy constrained world? Sustainability 3:322–362

    Article  Google Scholar 

  40. Ren R, Zhang X, Liu J, Sun N, Wu L, Li Z, Xu M (2017) A synthetic analysis of greenhouse gas emissions from manure amended agricultural soils in China. Sci Rep 7. Article number: 8123

    Google Scholar 

  41. Lehtinen T, Schlatter N, Baumgarten A, Bechini L, Ruger JK, Grignani CL, Zavattaro L, Costamagna C, Spiegel H (2014) Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag 30:524–538. https://doi.org/10.1111/sum.12151

    Article  Google Scholar 

  42. Sharratt BS (1992) Growing season trends in the alaskan climate record. Arctic: 45:124–127. Year Book, 2005–2006, Ministry of Food, Agriculture and Live Stock, Pakistan

    Google Scholar 

  43. García-Suárez AM, Butler CJ (2006) Soil temperatures at Armagh Observatory, northern Ireland, from 1904 to 2002. Int J Climatol 26:1075–1089. https://doi.org/10.1002/joc.1294

    Article  Google Scholar 

  44. Du J, Li C, Liao J, Pa L, Lu H (2007) Responses of climatic change on soil temperature at shallow layers in Lhasa from 1961 to 2005. Meteorol Mon 33(10):61–67

    Google Scholar 

  45. Ahmad MF, Rasul G (2008) Prediction of soil temperature by air temperature; a case study for faisalabad. Pak J Meteorol 5(9):19–27

    Google Scholar 

  46. Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL (2011) Observed soil temperature trends associated with climate change in Canada. J Geophys 116. https://doi.org/10.1029/2010JD015012

  47. Sadek II, Youssef MA (2014) Effect of different types of fertilization and some climatic factors on soil carbon dioxide (CO2) emission. N Y Sci J 7(7):1–12. ISSN: 1554-0200. http://www.scienceoub.net/newvork

  48. Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015) Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12:4121–4132. https://doi.org/10.5194/bg-12-4121-2015

    Article  Google Scholar 

  49. Treat CC, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, Norby RJ, Chowdhury TR, Richter A, Šantrůčková H, Schädel C, Schuur EAG, Sloan VL, Turetsky MR, Waldrop MP (2015) A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob Change Biol 21:2787–2803. https://doi.org/10.1111/gcb.12875

    Article  Google Scholar 

  50. Borken W, Xu YJ, Brumme R, Lamersdorf N (1999) A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil drought and rewetting effects. Soil Sci Soc Am J 63:1848–1855. https://doi.org/10.2136/sssaj1999.6361848x

    Article  CAS  Google Scholar 

  51. Bond-Lamberty B, Smith AP, Bailey V (2016) Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils. Biogeosciences 13:6669–6681. https://doi.org/10.5194/bg-13-6669-2016

    Article  CAS  Google Scholar 

  52. McLain JET, Martens DA (2006) Moisture controls on trace gas fluxes in semiarid riparian soils. Soil Sci Soc Am J 70:367–377. https://doi.org/10.2136/sssaj2005.0105

    Article  CAS  Google Scholar 

  53. Ludwig J, Meixner FX, Vogel B, Förstner J (2001) Soil–air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52:225–257. https://doi.org/10.1023/A:1006424330555

    Article  CAS  Google Scholar 

  54. Wu X, Brüggemann N, Gasche R, Shen Z, Wolf B, Butterbach-Bahl K (2010) Environmental controls over soil-atmosphere exchange of N2O, NO, and CO2 in a temperate Norway spruce forest. Glob Biogeochem Cycles 24. https://doi.org/10.1029/2009GB003616

  55. Zhang X, Yina S, Li Y, Zhuang H, Li C, Liua C (2014) Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China. Sci Total Environ 472(2014):381–388. https://doi.org/10.1016/j.scitotenv.2013.11.014

    Article  CAS  Google Scholar 

  56. IPCC (2013) Supplement to the 2006 IPCC guidelines for National greenhouse gas inventories: wetlands. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds) IPCC/TFI

    Google Scholar 

  57. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985

    Article  CAS  Google Scholar 

  58. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosys 52:225–248. https://doi.org/10.1023/A:1009740530221

    Article  CAS  Google Scholar 

  59. McSwiney CP, Robertson GP (2005) Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob Change Biol 11:1712–1719. https://doi.org/10.1111/j.1365-2486.2005.01040

    Article  Google Scholar 

  60. Van Groenigen JW, Velthof GL, Oenema O (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61:903–913. https://doi.org/10.1111/j.1365-2389.2009.01217.x

    Article  CAS  Google Scholar 

  61. Meurer KHE, Franko U, Stange CF, Dalla Rosa J, Madari BE, Jungkunst HF (2016) Direct nitrous oxide (N2O) fluxes from soils under different land use in Brazil—a critical review. Environ Res Lett 11:023001. https://doi.org/10.1088/1748-9326/11/2/023001

    Article  CAS  Google Scholar 

  62. Shcherbak I, Millar N, Robertson GP (2014) Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci USA 111:9199–9204

    Article  CAS  Google Scholar 

  63. Verhoeven E, Pereira E, Decock C, Garland G, Kennedy T, Suddick E, Horwath Wand Six J (2017) N2O emissions from California farmlands: a review. Calif Agr 71(3):148–159. https://doi.org/10.3733/ca.2017a0026x

    Article  Google Scholar 

  64. Zhu-Barker X, Horwath WR, Burger M (2015) Knife-injected anhydrous ammonia increases yield-scaled N2O emissions compared to broadcast or band-applied ammonium sulfate in wheat. Agr Ecosyst Environ 212:148–157. https://doi.org/10.1016/j.agee.2015.06.025

    Article  CAS  Google Scholar 

  65. Phillips RL, Tanaka DL, Archer DW, Hanson JD (2009) Fertilizer application timing influences greenhouse gas fluxes over a growing season. J Environ Qual 38:1569–1579. https://doi.org/10.2134/jeq2008.0483

    Article  CAS  Google Scholar 

  66. Sistani KR, Jn-Baptiste M, Lovanh N, Cook KL (2011) Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers. J Environ Qual 40:1797–1805. https://doi.org/10.2134/jeq2011.0197

    Article  CAS  Google Scholar 

  67. Jäger N, Stange CF, Ludwig B, Flessa H (2011) Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments: a laboratory study. Biol Fertil Soils 47:483–494. https://doi.org/10.1007/s00374-011-0553-5

    Article  CAS  Google Scholar 

  68. Arunrat N, Pumijumnong N (2017) Practices for reducing greenhouse gas emissions from rice production in Northeast Thailand. Agriculture 7(1):4. https://doi.org/10.3390/agriculture7010004

    Article  CAS  Google Scholar 

  69. Farag AA, Abd-Elrahman SH (2016) Greenhouse gas emission from cauliflower grown under different nitrogen rates and mulches. Int J Plant Soil Sci 9(1):1–10. Article no. IJPSS.19880. ISSN: 2320-7035

    Google Scholar 

  70. Jarecki MK, Lal R (2006) Compost and mulch effects on gaseous flux from an alfisol in Ohio. Soil Sci 171:249–260

    Article  CAS  Google Scholar 

  71. Birkás M (2008) Environmentally-sound adaptable tillage–solutions from Hungary. AkademiaiKiado, Budapest, pp 191–194

    Google Scholar 

  72. Jabro JD, Sainju U, Stevens WB, Evans RG (2008) Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J Environ Manag 88:1478–1484

    Article  CAS  Google Scholar 

  73. Kessavalou A, Mosier AR, Doran JW, Drijber RA, Lyon DJ, Heinemeyer O (1998) Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management. J Environ Qual 27:1094–1104

    Article  CAS  Google Scholar 

  74. Galdos M, Cerri C, Cerri C (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153:347–352

    Article  CAS  Google Scholar 

  75. Silva-Olaya AM, Cerri CEP, La Scala N Jr, Dias CTS, Cerri CC (2013) Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Env Res Lett 8(1). IOP Publishing Ltd

    Google Scholar 

  76. Bilandžija D, Zgorelec Z, Kisi´ I (2016) Influence of tillage practices and crop type on soil CO2 emissions. Sustainability 8:90. https://doi.org/10.3390/su8010090

    Article  CAS  Google Scholar 

  77. Bilen S, Celik A, Altikat S (2010) Effects of strip and full-width tillage on soil carbon IV oxide-carbon (CO2–C) fluxes and on bacterial and fungal populations in sunflower. Afr J Biotechnol 9:6312–6319

    CAS  Google Scholar 

  78. Al-Kaisi MM, Yin XH (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations. J Environ Qual 34:437–445

    Article  CAS  Google Scholar 

  79. La Scala N, Bolonhezi D, Pereira GT (2006) Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil Tillage Res 91:244–248

    Article  Google Scholar 

  80. Zheng X, Han S, Huang Y, Wang Y, Wang M (2004) Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob Biogeochem Cycle 18, GB2018

    Google Scholar 

  81. Jain N, Pathak H, Mitra S, Bhatia A (2004) Emission of methane from rice fields—a review. J Sci Ind Res 63:101–115

    CAS  Google Scholar 

  82. Corbett JE, Tfaily MM, Burdige DJ, Glaser PH, Chanton JP (2015) The relative importance of methanogenesis in the decomposition of organic matter in northern peatlands. J Geophys Res Biogeosci 120:280–293. https://doi.org/10.1002/2014JG002797

    Article  CAS  Google Scholar 

  83. EPA (United States Environmental Protection Agency) (2006) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020, EPA 430-R-06-003

    Google Scholar 

  84. Linquist B, van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, van Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Change Biol 18:194–209

    Article  Google Scholar 

  85. van Groenigen KJ, van Kessel C, Hungate BA (2013) Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat Clim Change 3:288–291. https://doi.org/10.1038/nclimate1712

    Article  CAS  Google Scholar 

  86. Farag AA, Radwan HA, Abdrabbo MAA, Heggi MAM (2013a) Inventory of the greenhouse gas Emissions from rice in the Nile Delta by using emission models, Egypt. J Agric Res 91(2b):917–937

    Google Scholar 

  87. Farag AA, Radwan HA, Abdrabbo MAA, Heggi MAM, McCarl BA (2013b) Carbon footprint for paddy rice production in Egypt Nat Sci 11(12):36–45. ISSN: 1545-0740. http://www.sciencepub.net/nature

  88. Smith JB, McCarl BA, Kirshen P, Jones R, Deck L, Abdrabo MA, Borhan M, El-Ganzori A, El-Shamy M, Hassan M, El-Shinnawy I, Abrabou M, Hassanein MK, El-Agizy M, Bayoumi M, Hynninen R (2014) Egypt’s economic vulnerability to climate change. Int Res Clim Res 62:59–70. https://doi.org/10.3354/cr01257

    Article  Google Scholar 

  89. Tubiello FN, Salvatore M, Condor Golec RD, Ferrara AF, Rossi S, Biancalani R, Federici S, Jacobs H, Flammini A (2014) Agriculture, forestry and other land use emissions by sources and removals by Sinks. ESS working paper no. 2. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  90. van der Werf G, Randerson J, Giglio L (2010) Global fire emissions and the contribution of deforestation, svanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735

    Article  Google Scholar 

  91. Streets DG, Yarber KF, Woo J-H, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cycles 17:1099–1118. https://doi.org/10.1029/2003GB002040

    Article  CAS  Google Scholar 

  92. Arai H, Hosen Y, Hong VP, Th NT, Huu CN, Inubushi K (2015) Greenhouse gas emissions from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the Mekong Delta. Soil Sci Plant Nutr 61(4):719–735. https://doi.org/10.1080/00380768.2015.1041862

    Article  CAS  Google Scholar 

  93. Gadde B, Bonnet S, Menke C, Garivait S (2009) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Pollut 157:1554–1558. https://doi.org/10.1016/j.envpol.2009.01.004

    Article  CAS  Google Scholar 

  94. Said N, EL-Shatoury SA, Diaz LF, Zamorano M (2013) Quantitative appraisal of biomass resources and their energy potential in Egypt. Renew Sustain Energy Rev 24:84–91

    Article  Google Scholar 

  95. FAO (2013) Rice market monitor, Nov 2013

    Google Scholar 

  96. Abdelhady S, Borellob D, Shabanb A, Rispolib F (2014) Viability study of biomass power plant fired with rice straw in Egypt. Energy Proc 61:211–215. https://doi.org/10.1016/j.egypro.2014.11.1072

    Article  Google Scholar 

  97. FAOSTAT (2012) Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. The state of food insecurity in the world, FAO, Rome, p 65

    Google Scholar 

  98. Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Soko NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–110

    Article  CAS  Google Scholar 

  99. Moebius BN, van Es HM, Schindelbeck RR, Idowu OJ, Clune DJ, Thies JE (2007) Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci 172:895–912

    Article  CAS  Google Scholar 

  100. Reynolds WD, Drury CF, Tan CS, Fox CA, Yang XM (2009) Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 152:252–263

    Article  Google Scholar 

  101. Dang Y, Ren W, Tao B, Chen G, Lu C, Yang J (2014) Climate and land use controls on soil organic carbon in the Loess Plateau Region of China. PLoS ONE 9(5):e95548. https://doi.org/10.1371/journal.pone.0095548

    Article  CAS  Google Scholar 

  102. Garnett T (2012) Climate change and agriculture. International Institute for Environment and Development, UK. ISBN: 978-1-84369-853-1. http://pubs.iied.org/pdfs/16512IIED.pdf

  103. Meersmans J, Arrouays D, Anton JJ, Rompaey V, Pagé C, De Baets S, Quine TA (2016) Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France. Sci Rep 6:35798. https://doi.org/10.1038/srep35798

    Article  CAS  Google Scholar 

  104. Wan Y, Linab E, Xiong W, Li Yu’e, Guo L (2011) Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agr Ecosyst Environ 141(2):23–31. https://doi.org/10.1016/j.agee.2011.02.004

    Article  Google Scholar 

  105. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedback to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    Article  CAS  Google Scholar 

  106. Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change 3:395–398. https://doi.org/10.1038/nclimate1796

    Article  CAS  Google Scholar 

  107. Ågren GI, Wetterstedt JAM (2007) What determines the temperature response of soil organic matter decomposition? Soil Biol Biochem 39(7):1794–1798. https://pub.epsilon.slu.se/4560/1/agren_g_et_al_100304.pdf

  108. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404(6780):858–861. https://doi.org/10.1038/35009076

  109. García-Fayos P, Bochet E (2009) Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems. Glob Change Biol 15:306–318

    Article  Google Scholar 

  110. Brevik EC (2009) Soil health and productivity. In: Verheye W (ed) Soils, plant growth and crop production. Encyclopedia of life support systems (EOLSS). Developed Under the Auspices of the UNESCO. EOLSS Publishers, Oxford. Available online: http://www.eolss.net

  111. Eid EM, Shaltout KH (2013) Evaluation of carbon sequestration potentiality of Lake Burullus, Egypt to mitigate climate change. Egypt J Aquat Res 39(1):31–38. https://www.sciencedirect.com/science/article/pii/S1687428513000666

  112. DEFRA (Department for Environment, Food and Rural Affairs) (2005) Impacts of climate change on soil functions. DEFRA Research and Development, UK, Final Project Report [CSG 15]. http://randd.defra.gov.uk/Document.aspx?Document=SP1601_9494_FRP.pdf

  113. Bot A, Benites J (2005) The importance of soil organic matter key to drought-resistant soil and sustained food and production. In: FAO soils bulletin, vol 80. Food and Agriculture Organization of the United Nations, Rome, pp 78

    Google Scholar 

  114. Mackay AD, Barber SA (1984) Soil temperature effects on root growth and phosphorus uptake by corn. Soil Sci Soc Am J 48:818–823

    Article  CAS  Google Scholar 

  115. Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  116. Cramer MD, Hawkins HJ, Verboom GA (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24. https://www.ncbi.nlm.nih.gov/pubmed/19449035

  117. Högy P, Poll C, Marhan S, Kandeler E, Fangmeier A (2013) Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem 136:1470–1477. https://doi.org/10.1016/j.foodchem.2012.09.056

    Article  CAS  Google Scholar 

  118. Li X, Jiang D, Liu F (2016) Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat. Scientific Reports, 6, Article number: 23313. https://doi.org/10.1038/srep23313

  119. Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4:51–73. https://doi.org/10.17311/sciintl.2016.51.73

    Article  CAS  Google Scholar 

  120. Varallyay G (2010) The impact of climate change on soils and on their water management. Agron Res 8:385–396. http://agronomy.emu.ee/vol08Spec2/p08s214.pdf

  121. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33. https://doi.org/10.1007/s11104-009-9925-0

    Article  CAS  Google Scholar 

  122. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814. https://doi.org/10.1038/ismej.2008.58

    Article  CAS  Google Scholar 

  123. DeAngelis KM, Pold G, Topcuoglu BD, van Diepen L TA, Varney RM, Blanchard J, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6. https://www.frontiersin.org/articles/10.3389/fmicb.2015.00104/full

  124. Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Glob Change Biol 20:2971–2982. https://doi.org/10.1111/gcb.12585

    Article  Google Scholar 

  125. Feng X, Simpson AJ, Wilson KP, Williams DD, Simpson MJ (2008) Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat Geosci 1(12):836–839. https://doi.org/10.1038/ngeo361

    Article  CAS  Google Scholar 

  126. Hirsch PR, Gilliam LM, Sohi SP, Williams JK, Clark IM, Murray PJ (2009) Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities. Soil Biol Biochem 41:2021–2024. https://doi.org/10.1016/j.soilbio.2009.07.011

    Article  CAS  Google Scholar 

  127. Wu Y, Kemmitt S, White RP, Xu J, Brookes PC (2012) Carbon dynamics in a 60 year fallowed loamy-sand soil compared to that in a 60 year permanent arable or permanent grassland UK soil. Plant Soil 352:51–63. https://doi.org/10.1007/s11104-011-0979-4

    Article  CAS  Google Scholar 

  128. Gregory AS, Watts CW, Whalley WR, Kuan HL, Griffiths BS, Hallett PD, Whitmore AP (2007) Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. Eur J Soil Sci 58:1221–1232. https://doi.org/10.1111/j.1365-2389.2007.00956.x

    Article  Google Scholar 

  129. Bardgett RD, Hobbs PJ, Frostegard A (1996) Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264. https://doi.org/10.1007/bf00382522

    Article  Google Scholar 

  130. Whitmore AP, Rickson RJ, Watts CW, Clarke MA (2004) Critical levels of soil organic carbon in surface soils in relation to soil stability, function and infiltration. Project SP0519 final report. Department for Environment, Food and Rural Affairs, London, UK. http://randd.defra.gov.uk/Document.aspx?Document=SP1601_9494_FRP.pdf

  131. Riley H, Pommeresche R, Eltun R, Hansen S, Korsaeth A (2008) Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use. Agr Ecosyst Environ 124:275–284. https://doi.org/10.1016/j.agee.2007.11.002

    Article  Google Scholar 

  132. Gregory AS, Watts CW, Griffiths BS, Hallett PD, Kuan HL, Whitmore AP (2009) The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma 153:172–185. https://doi.org/10.1016/j.geoderma.2009.08.002

    Article  Google Scholar 

  133. Gakab G, Németh T, Csepinszky B, Madarász B, Szalai Z, Kertész A (2013) The influence of short term soil sealing and crusting on hydrology and erosion at balaton uplands, hungary. Carpath J Earth Env Sci 8(1):147–155. http://real.mtak.hu/4000/1/Jakab_et_al_crust.pdf

  134. Chen L, Sela S, Svoray T, Assouline S (2012) Impact of soil surface sealing on Rainfall-Runoff Processes in semi-arid areas. EGU general assembly 2012, Vienna, Austria, 22–27 Apr 2012, p 7441. http://meetingorganizer.copernicus.org/EGU2012/EGU2012-7441.pdf

  135. Nciizah AD, Wakindiki IC (2015) Soil sealing and crusting effects on infiltration rate: a critical review of shortfalls in prediction models and solutions. Arch Agron Soil Sci 61(9):1211–1230. https://doi.org/10.1080/03650340.2014.998203

    Article  Google Scholar 

  136. Brecht H, Dasgupta S, Laplante B, Murray S, Wheeler D (2012) Sea-level rise and storm surges: High stakes for a small number of developing countries. J Env Dev 21:120–138. https://doi.org/10.1177/1070496511433601

    Article  Google Scholar 

  137. Wheeler D (2011) Quantifying vulnerability to climate change: implications for adaptation assistance. Center for Global Development Working Paper No. 240, Washington

    Google Scholar 

  138. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106(51):21527–21532

    Article  CAS  Google Scholar 

  139. El Shinnawy IA, Abo Zed AI, Ali MA, Deabes EA, Abdel-Gawad S (2010) Vulnerability to climate changes and adaptation assessment for coastal zones of Egypt. In: Proceedings of the first international journal on coastal zone management of River Deltas and Low Land Coastlines, Alexandria, Egypt, pp 145–160. ISSN 1110-4929

    Google Scholar 

  140. Smith P, Bustamante M, Ahammad H, Clark H, Dong EA, Elsiddig H, Haberl R, Harper J, House J, Jafari M, Masera O (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer OR, Pichs-Madruga Y, Sokona E et al (eds) Climate change: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  141. Hamouda AZ (2010) Worst scenarios of tsunami effects along the Mediterranean coast of Egypt. Mar Geophys Res 31(3):197–214. https://doi.org/10.1007/s11001-010-9099-4

    Article  Google Scholar 

  142. Jean-Daniel SJD, Clemente PL (2017) Increased land subsidence and sea-level rise are submerging Egypt’s Nile Delta coastal margin. GSA Today 27(5):4–11. http://www.geosociety.org/gsatoday/archive/27/5/pdf/GSATG312A.1.pdf

  143. Varallyay G (1994) Climate change, soil salinity and alkalinity. In: Rounsevell MDA, Loveland PJ (eds) Soil responses to climate change. Springer, Heidelberg, pp 39–54. ISBN: 978-3-642-79220-5

    Google Scholar 

  144. Peck AJ, Allison GB (1988) Groundwater and salinity response to climate change. In: Pearman GI (ed) Greenhouse: planning for climate change. Brill Archive, Melbourne, pp 238–251. ISBN-13: 9780643048638

    Google Scholar 

  145. Nicolas ME, Munns R, Samarakoon AB, Gifford RM (1993) Elevated CO2 improves the growth of wheat under salinity. Aust J Plant Physiol 20:349–360. http://agris.fao.org/agris-search/search.do?recordID=AU19950115537

  146. Ashour EK, Al-Najar H (2012) The impact of climate change and soil salinity in irrigation water demand in the Gaza Strip. J Earth Sci Clim Change 3:120. https://doi.org/10.4172/2157-7617.1000120

    Article  Google Scholar 

  147. Hossain M, Huq M, Wheeler D (2015) Climate change and soil salinity: the case of coastal Bangladesh Susmita Dasgupta. Ambio 44(8):815–826. https://doi.org/10.1007/s13280-015-0681-5, http://www.plantstress.com/Articles/min_deficiency_i/nutrient%20uptake.pdf, https://doi.org/10.1073/pnas.0907765106, https://doi.org/10.1073/pnas.1209429109, https://www.ncdc.noaa.gov/sotc/global/201709

  148. Wassef R, Schüttrump H (2016) Impact of sea-level rise on groundwater salinity at the development area western delta, Egypt. Ground Water Sustain Dev 2(3):85–103. https://doi.org/10.1016/j.gsd.2016.06.001

    Article  Google Scholar 

  149. FAO (2017) Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations Rome, Italy. http://www.fao.org/3/a-i6937e.pdf

  150. IPCC (2014) Climate change: synthesis, report contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, http://www.ipcc.ch/report/ar5/syr/

  151. Dadamouny MA, Schnittler M (2016) Trends of climate with rapid change in Sinai, Egypt. J Water Clim Change 7(2):393–414. https://doi.org/10.2166/wcc.2015.215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda Ragab Shahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahin, R.R. (2020). Soils as Driver and Victim of Climate Change in Egypt. In: Ewis Omran, ES., Negm, A. (eds) Climate Change Impacts on Agriculture and Food Security in Egypt. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-41629-4_7

Download citation

Publish with us

Policies and ethics