Skip to main content

Facing Climate Change: Urban Gardening and Sustainable Agriculture

  • Chapter
  • First Online:
Climate Change Impacts on Agriculture and Food Security in Egypt

Part of the book series: Springer Water ((SPWA))

Abstract

Measures to combat climate change encompass two primary titles: removal of the maximum greenhouse effective gases and decreasing causes of greenhouse gas emissions. The direct greenhouse gases are carbon dioxide, nitrous oxide, and methane. Nitrous oxide is approximately 300 and methane around 30 times than carbon dioxide at trapping heat in the atmosphere. Climate change affects and is affected by all communities, but its treatment must begin with the actions of individuals. Trees in the urban area strongly reduce pedestrian level heat stress by absorbing and reflecting solar irradiance. Vegetation in gardens is one of the most important components affecting climate change. Urban gardening, mainly consist of trees resource, is a valuable asset. Trees’ benefits to the human being were most pronounced in their contribution to environmental benefits. Thus, plants in gardens were found to provide a particularly important function in mitigating climate change and maintaining environmental quality of communities. Gardeners can help lessen the global warming pollutants associated with waste disposal by turning leaves, grass, woody garden clippings, and dead garden waste into mulch or compost, then using it in the garden. Recycling these wastes will not only reduce methane emissions from landfills but also improve garden’s soil and help it store carbon. One of the innovative methods that reduces greenhouse gases emissions is to make and use biochar. Because nitrous oxides is an important greenhouse gas, better management of nitrogen fertilizers can reduce its emissions. The four main management factors that help reduce nitrous oxide emissions from applied nitrogen fertilizer are commonly known as the 4R’s: right application rate; right formulation (fertilizer type); right timing of application; right placement at the plant’s root zone as possible. So, selecting right plants for urban gardens have a potential to influence Earth’s climate by altering regional and global circulation patterns and changing the amount of CO2 in the atmosphere. Also, it is important to deal with the soil to minimize the harmful impact it could cause to the environment. Planting appropriate tree species near industrial complexes is critical for aesthetic value and gases mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Bank (2009) Training material case study, Egypt: the Nile delta drainage project Agriculture and Rural Development Department. The World Bank, USA Public Disclosure Authorized EGYPT, The Nile-delta drainage project. http://documents.worldbank.org/curated/en/251421468246925594/pdf/UNN1780Box338884B01official0use0only1.pdf

  2. El-Shahawi M (2004) Climate change and some potential impacts on Egypt. First national symposium in climate change and its impacts on Environment in Egypt. National IGBP & SCOPE Committee and Suez Canal University, Ismailia, Egypt

    Google Scholar 

  3. Abdalla Z, Yunsheng L (2015) Impact of climate change on agriculture sector in Egypt and China. In: 4th International conference on agriculture and horticulture. https://doi.org/10.4172/2168-9881.s1.016

  4. NASA (National Aeronautics and Space Administration) (2018) Global climate change. Vital signs of the planet. A blanket around the Earth. Available at: https://climate.nasa.gov/vital-signs/sea-level/

  5. UNEP/EWWP (1998). Major environmental assessments. Global environment outlook. United Nations Environment Programme (UNEP). Oxford University Press, New York. http://www.grid.unep.ch/geo2000/

  6. Eid MH (1999) Climate change studies on Egyptian agriculture. Egypt–US workshop on Global Climate Change, NARSS, EEAA and USEPA, Cairo, Egypt

    Google Scholar 

  7. Knickmeyer E (2008) In Egypt upper crust gets the bread. Published in the Washington Post Foreign Service. http://www.washingtonpost.com/wp-dyn/content/article/2008/04/04/AR2008040403937.html?hpid%253Dmoreheadlines&sub=AR

  8. NASA (National Aeronautics and Space Administration) (2019) Global climate change. Warming seas may increase frequency of extreme storms. https://climate.nasa.gov/news/2837/warming-seas-may-increase-frequency-of-extreme-storms/

  9. Wang ZP, Han SJ, Li HL, Deng FD, Zheng YH, Liu HF, Han XG (2017) Methane production explained largely by water content in the heartwood of living trees in upland forests. J Geophys Res 122:2479–2489

    Article  CAS  Google Scholar 

  10. Thomey ML, Ford PL, Reeves MC, Finch DM, Litvak ME, Collins SL (2014) Climate change impacts on future carbon stores and management of warm deserts of the United States. Rangelands 36(1):16–24

    Article  Google Scholar 

  11. Darlington (2004) An integrated indoor air biofiltration system for municipal infrastructure. Nedlaw Living Walls, Air Quality Solutions Ltd. University of Guelph, Canada, pp 1–50

    Google Scholar 

  12. Sundqvist E, Vestin P, Crill P, Persson T, Lindroth A (2014) Short-term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest. Biogeosciences 11(21):6095–6105

    Article  Google Scholar 

  13. Sundqvist E, Crill P, Mölder M, Vestin P, Lindroth A (2012) Atmospheric methane removal by boreal plants. Geophys Res Lett 39(21):1–6, L21806

    Google Scholar 

  14. Nowers N (2016) The effect of an oregano oil extract in a lactating dairy cow diet on production responses of Holstein cows. Doctoral dissertation, Stellenbosch University, Stellenbosch‏

    Google Scholar 

  15. Hristov AN, Lee C, Cassidy T, Heyler K, Tekippe JA, Varga GA, Corl B, Brandt RC (2013) Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J Dairy Sci 96(2):1189–1202.‏

    Google Scholar 

  16. Kim KJ, Kil MJ, Song JS, Yoo EH, Son KC, Kays SJ (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J Am Soc Horticult Sci 133(4):521–526‏

    Google Scholar 

  17. Koriesh EM (2018a) Studies on air pollution 3: evaluation of some ornamental trees and shrubs for transpiration and reducing atmosphere temperature. In: The 8th international Arabic conference, Ismailia, Egypt, Ismailia, Egypt

    Google Scholar 

  18. Ralph L, Wood R, Tarran J, Torpy F, Burchett M (2004) Removal of benzene by the indoor plant/substrate microcosm and implications for air quality. Water Air Soil Pollut 157:193–207

    Article  Google Scholar 

  19. Abalos D, Sanchez-Martin L, Garcia-Torres L, Van Groenigen JW, Vallejo A (2014) Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Sci Total Environ 490:880–888

    Article  CAS  Google Scholar 

  20. Ussiri D, Lal R (2013). The role of fertilizer management in mitigating nitrous oxide emissions. In: Soil emission of nitrous oxide and its mitigation. Springer, Netherlands. 978-94-007-5363-1, 978-94-007-5364-8

    Google Scholar 

  21. Ingram DS, Vince-Prue D, Gregory PJ (2008) Science and the garden: the scientific basis for horticultural practice. Blackwell Publishing, Chichester

    Google Scholar 

  22. Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Biores Technol 100(16):3792–3798

    Article  CAS  Google Scholar 

  23. Van de Kamp ME, van Dooren C, Hollander A, Geurts M, Brink EJ, van Rossum C, Biesbroeka S, Ede Valkc IB, Toxopeusand, Temme EH (2017) Healthy diets with reduced environmental impact? The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Res Int 104, 14–24

    Google Scholar 

  24. Audsley E, Brander M, Chatterton J, Murphy-Bokern D, Webster C, Williams A (2009) How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope to reduce them by 2050. WWF-UK

    Google Scholar 

  25. EPA (Environmental Protection Agency) (2017) What to plant. EPA Government. Available at: https://www.epa.gov/watersense/what-plant

  26. Sutton M, Reis S, Skiba U, Nemitz E, Beier C, Butterbach-Bahl K, Cellier P, de Vries W, Erisman JW (2011) Nitro Europe IP—the nitrogen cycle and its influence on the European greenhouse gas balance. Final Report to the European Commission (Publishable Activity Report), pp 1–44

    Google Scholar 

  27. Livesley S, Dougherty B, Smith A, Navaud D, Wylie L, Arndt S (2010) Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in urban garden systems: impact of irrigation, fertilizer and mulch. Urban Ecosyst 13:273–293

    Article  Google Scholar 

  28. Okano K, Machida T, Totsuka L (1988) Absorption of atmospheric NO2 by several herbaceous species, estimation by the 15N dilution method. New Phytol 109:203–210

    Article  CAS  Google Scholar 

  29. Butterbach-Bahl K, Baggs E, Dannenmann K, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Electronic supplementary material is available at http: http://rstb.royalsocietypublishing.org

  30. Signor D, Cerri C, Conant R (2013) N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environ Res Lett Bristol 8(1):1–9

    Google Scholar 

  31. Follett RF, Shafer SR, Jawson MD, Franzluebbers AJ (2005) Main content area research and implementation needs to mitigate greenhouse gas emissions from agriculture in the USA. Soil Tillage Res 83(1):159–166

    Article  Google Scholar 

  32. Shcherbak I, Millar N, Philip Robertson G (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci USA 111(25):9199–9204

    Article  CAS  Google Scholar 

  33. Millar N, Doll JE, Robertson GP (2014) Management of nitrogen fertilizer to reduce nitrous oxide (N2O) emissions from field crops. In: Climate change and agriculture fact sheet series, MSU Extension Bulletin E, 3152.‏ Available at: https://lter.kbs.msu.edu/wp-content/uploads/2014/12/Nitrogen-fertilizer_climate-fact-sheet_FINAL.pdf

  34. Hultgreen G, Leduc P (2003) The effect of nitrogen fertilizer placement, formulation, timing, and rate on greenhouse gas emissions and agronomic performance. Agricult Agr-Food Canada & Prairie Agricultural Machinery Institute, Swift Current

    Google Scholar 

  35. Cavigelli MA, Del Grosso SJ, Liebig MA, Snyder CS, Fixen PE, Venterea RT, Leytem AB, McLain JE, Watts DB (2012) US agricultural nitrous oxide emissions: context, status, and trends. Front Ecol Environ 10(10):537–546

    Article  Google Scholar 

  36. EPA (Environmental Protection Agency) (2016) Sulfur dioxide (SO2) pollution. https://www.epa.gov/so2-pollution/sulfur-dioxide-basics

  37. Zhang X, Zhou P, Zhang W, Zhang W, Wang Y (2013) Selection of landscape tree species of tolerant to sulfur dioxide pollution in subtropical China. Open J For 3(4):104–108

    Google Scholar 

  38. Mohajan HK (2014) Mini review Chinese sulphur dioxide emissions and local environment pollution. Int J Sci Res Knowl 2(6):265–276

    Google Scholar 

  39. Han Y, Li Z, Liu R (2002) Potential of purifying SO2 of main tree species and their planting quota in Shenyang area. Ying yong sheng tai xue bao = J Appl Ecol 13(5):601–604‏

    Google Scholar 

  40. El-Sadek M, Koriesh E, Fujii E, Moghazy E, Abd El-fatah Y (2012) Correlation between some components of interior plants and their efficiency to reduce formaldehyde, nitrogen and sulfur oxides from indoor air. Int Res J Plant Sci 3(10), pp 222–229. ISSN: 2141–5447

    Google Scholar 

  41. IPCC (Intergovernmental Panel on Climate Change) (2006) Solid waste disposal. In: IPCC guidelines for national greenhouse gas inventories, vol 5: waste. Online at http://www.Ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf

  42. IPCC: Climate Change (2014) Mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. In: Edenhofer EO, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds). Cambridge University Press, Cambridge

    Google Scholar 

  43. Ward PL (2009) Sulfur dioxide initiates global climate change in four ways. Thin Solid Films 517(11):3188–3203

    Article  CAS  Google Scholar 

  44. Smith J (2012) Urban air quality. Woodland Trust. https://www.woodlandtrust.org.uk/mediafile/100083924/Urban-air-quality-report-v4-single-pages.pdf

  45. SEPA (Scotch Environment Protection Agency) (2006) Chlorofluorocarbons (CFCs) fact sheet. State of the Scottish Environment 2006. www.sepa.org.uk. http://apps.sepa.org.uk/spripa/pages/substanceinformation.aspx?pid=114

  46. Tekippe JA, Hristov A, Heyler K, Cassidy T, Zheljazkov V, Ferreira J, Karnati S, Varga G (2011) Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cattle. J Dairy Sci 94:5065–5079

    Article  CAS  Google Scholar 

  47. Wilson C, Grubler A, Gallagher KS, Nemet GF (2012) Marginalization of end-use technologies in energy innovation for climate protection. Nat Clim Change 2(11):780–788

    Article  Google Scholar 

  48. Zhang W, Wang B, Niu X (2017) Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests 8(3):92–103

    Article  Google Scholar 

  49. Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, van Loustau DM, Lundmark T, Norby RJ, Oren R, Ryan MG, Sigurdsson BD, Strömgren M, Oijen MV, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173(3):463–480

    Google Scholar 

  50. Ball B, Taggart M, Scott A (2004) Mitigation of greenhouse gas emissions from soil under silage production by use of organic manures or slow-release fertilizer. Soil Use Manag 20:287–295

    Google Scholar 

  51. Farming Futures (2009) Climate change: be part of the solution focus on: soil management. Fact Sheet No. 20. Available at: http://adlib.everysite.co.uk/resources/000/241/422/FS20.pdf

  52. Whitmore A, Kirk G, Rawlins B (2015) Technologies for increasing carbon storage in soil to mitigate climate change. Soil Use Manag 31:62–71

    Article  Google Scholar 

  53. Lockwood A, Filley T, Rhodes D, Shepson P (2008) Foliar uptake of atmospheric organic nitrates. Geophys Res Lett 35(15):1–5

    Article  CAS  Google Scholar 

  54. Dobbie KE, Smith KA (2003) Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutr Cycl Agroecosyst 67(1):37–46

    Article  CAS  Google Scholar 

  55. Forum for the Future (2009) Climate change, foreign policy, and higher education by Levi M, Mullinix J. Forum for the future of higher education. Cambridge, MA. http://forum.mit.edu/articles/%EF%BB%BFclimate-change-foreign-policy-and-higher-education/

  56. Singh SK, Rao DN, Agrawal M, Pandey J, Naryan D (1991) Air pollution tolerance index of plants. J Environ Manage 32(1):45–55

    Article  Google Scholar 

  57. Awad YM, Blagodatskaya E, Ok Y, Kuzyakov Y (2013) Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C‐labelled maize residues and on their stabilization in soil aggregates. Eur J Soil Sci 64(4):488–499.‏ https://doi.org/10.1111/ejss.12034

  58. Yousaf B, Liu G, Wang R, Abbas Q, Imtiaz M, Liu R (2017) Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach. Gcb Bioenergy 9(6):1085–1099

    Article  CAS  Google Scholar 

  59. Wu J, Guo W, Feng J, Li L, Yang H, Wang X, Bian X (2014) Greenhouse gas emissions from cotton field under different irrigation methods and fertilization regimes in arid northwestern China. Sci World J. 407832–407832

    Google Scholar 

  60. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics withcharcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  61. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat Glob Change 11:403–427

    Article  Google Scholar 

  62. Oertela C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils—a review. Chem der Erde-Geochem 76(3):327–352

    Article  CAS  Google Scholar 

  63. Anonymous (2013) Surface runoff, percolation, total runoff and evaporation from precipitation. Published by: Senate Department for Urban Development and the Environment. No. 02.13, (2013 edn.). Available at: www.stadtentwicklung.berlin.de/umwelt/umweltatlas/e…/ekc213.doc

  64. ENPAA, English National Park Authorities Association (2009) Climate change mitigation and adaptation in national parks, London, EC2A 3NW, England. http://www.nationalparksengland.org.uk/__data/assets/pdf_file/0010/767467/ENPAA-Statement-on-Climate-Change-in-National-Parks.pdf

  65. Sanderson K (2008) Plants that reduce air nitrous oxide: trees eat pollution products. Nature. https://doi.org/10.1038/news.2008.1046

  66. Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35(4):1566–1575

    Article  CAS  Google Scholar 

  67. Hopkin M (2005) Tree planting not always green. Forests can suck up water and change the soil. Nat Mag. Published online 22 Dec 2005. Available at: https://doi.org/10.1038/news051219-14

  68. Hunsberger A, Alison F, Angela M, Barbra L, Bart S, Niemann B (2010) The Florida-friendly landscaping guide to plant selection & landscape design. University of Florida publications. Available at: https://fyn.ifas.ufl.edu/pdf/FYN_Plant_Selection_Guide_2015.pdf

  69. Boone L (2017) These 7 fire-retardant plants may help save your home (Yucca, Lemonade berry, Oak, Woolly blue curl, Catalina cherry). Available at: http://www.latimes.com/home/la-hm-firescaping-20170930-htmlstory.html

  70. Dickie G (2015) Plants that burn fastest in a wildfire. Available at: https://www.hcn.org/issues/47.13/after-a-record-setting-wildfire-a-washington-county-prepares-for-the-next-one/plants-that-burn-fastest-in-a-wildfire

  71. Cameron RW, Blanuša T, Taylor JE, Salisbury A, Halstead AJ, Henricot B, Thompson K (2012) The domestic garden—its contribution to urban green infrastructure. Urban For Urban Green 11(2):129–137

    Article  Google Scholar 

  72. Wilson M (2007) New gardening: how to garden in a changing climate. Mitchell Beazley and the Royal Horticultural Society. MITCH Publisher, London

    Google Scholar 

  73. Cross R, Spencer R (2009) Sustainable gardens. CSIRO, Collingwood. ISBN 9780643094222

    Google Scholar 

  74. Walker J (2011) How to create an eco garden: the practical guide to greener, planet-friendly gardening?. Aquamarine, Wigston

    Google Scholar 

  75. Clifford DP, Eckbo G (2017) Garden and landscape design. Encyclopædia Britannica, inc. https://www.britannica.com/art/garden-and-landscape-design

  76. Haynes J, McLaughlin J, Vasquez L, Hunsberger A (2001) Low-maintenance landscape plants for South Florida. Environmental Horticulture Department, Florida Cooperative Extension Service, University of Florida-IFAS Publication ENH854, Florida, USA

    Google Scholar 

  77. Hussein M (2018) Sustainable regeneration of urban green areas in Egypt’s desert cities adopting green infrastructure strategies in New Borg El-Arab City. M.Sc. Master of Science in Resource Efficiency in Architecture and Planning Hafen City University, Hamburg, Germany February, available at: http://edoc.sub.uni-hamburg.de/hcu/volltexte/2018/428/pdf/Hussein_Mahmoud_Master_thesis_2018.pdf

  78. Prieur D (2016) Environment, topics. Perennial plants can fight climate change, says Dr. Jerry Glover, Medill New Service. Available at: http://dc.medill.northwestern.edu/blog/2016/08/04/perennials-fighting-climate-change/#sthash.lZXd0d2L.DtR9oOsK.dpbs

  79. SENES Consultants Limited (2005) NWT environmental audit status of the environment report air quality, climate and climate change. Available at: https://www.aadncaandc.gc.ca/DAM/DAM-INTER-NWT/STAGING/textetext/soeaq_1316619536106_eng.pdf

  80. Sawidis T (1988) Uptake of radionuclides by plants after the Chernobyl accident. Environ Pollut 50(4):317–324

    Article  CAS  Google Scholar 

  81. Itoh S, Eguchi T, Kato N, Takahashi S (2014) Radioactive particles in soil, plant, and dust samples after the Fukushima nuclear accident. Soil Sci Plant Nutr 60(4):540–550

    Article  CAS  Google Scholar 

  82. Gupta DK, Chatterjee S, Datta S, Voronina AV, Walther C (2016) Radionuclides: accumulation and transport in plants. In: Reviews of environmental contamination and toxicology, vol 241. Springer, Cham, pp 139–160.‏ Gupta DK, Walther C (eds) (2014) Radionuclide contamination and remediation through plants. Springer, Berlin‏

    Google Scholar 

  83. Mimura T, Mimura M, Kobayashi D, Komiyama C, Sekimoto H, Miyamoto M (2014) Radioactive pollution and accumulation of radionuclides in wild plants in Fukushima. J Plant Res 127:5–10

    Article  CAS  Google Scholar 

  84. Hu N, Ding D, Li G (2014) Natural plant selection for radioactive waste remediation. Radionuclide contamination and remediation through plants. Springer, Cham, International Publishing Switzerland, pp 33–53

    Google Scholar 

  85. Pulhani VA, Dafauti S, Hegde AG, Sharma RM, Mishra UC (2005) Uptake and distribution of natural radioactivity in wheat plants from soil. J Environ Radioact 79(3):331–346

    Article  CAS  Google Scholar 

  86. Li G, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Cont Toxicol 86:646–652

    Article  CAS  Google Scholar 

  87. Juszak I, Schaepman-Strub G (2015) The impact of vegetation type on the shortwave radiation balance of the Arctic tundra. In: EGU general assembly conference abstracts, vol 17.‏ April, Bibliographic Code: 2015EGUGA.17.9051J. Available at: http://adsabs.harvard.edu/abs/2015EGUGA..17.9051J

  88. Donohoea A, Armour KC, Pendergrass AG, Battisti DS (2014) Shortwave and longwave radiative contributions to global warming under increasing CO2. Proc Natl Acad Sci 111(47):16700–16705

    Article  CAS  Google Scholar 

  89. UNFCCC (2012) United Nations framework convention on climate change handbook. https://unfccc.int/resource/docs/publications/handbook.pdf

  90. Wang K, Liang S (2009) Daytime net radiation from shortwave radiation measurements and meteorological observations. J Appl Meteorol Climat 48:643–648

    Article  Google Scholar 

  91. Heo HK, Park CY, Yang B, Lee DK (2018) Heat stress mitigation of urban trees—fine scale assessment based on terrestrial LiDAR data. Geophysical Research Abstracts 20, EGU2018-11878. Available at: https://meetingorganizer.copernicus.org/EGU2018/EGU2018-11878.pdf

  92. Kuusk A (1992) Absorption profiles of shortwave radiation in a vegetation canopy. Agric For Meteorol 62(3–4):191–204

    Article  Google Scholar 

  93. Galluzzo G (2012) Particulate matter and climate change. University of Iowa. Available at: https://now.uiowa.edu/2012/03/particulate-matter-and-climate-change

  94. Shi J, Zhang G, An H, Yin W (2017) Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmos Pollut Res 2017:1042–1309

    Google Scholar 

  95. Chen X, Pei T, Zhou Z, Teng M, He L, Luo M, Liu X (2015) Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): a street scale investigation in Wuhan, China. Urban Forestry and Urban Greening 14(2):354–360

    Article  Google Scholar 

  96. Chen X, Zhou Z, Teng M, Wang P, Zhou L (2015) Accumulation of three different sizes of particulate matter on plant leaf surfaces: effect on leaf traits. Arch Biol Sci 67(4):1257–1267

    Article  Google Scholar 

  97. Walling DE, Moorehead PW (1989) The particle size characteristics of fluvial suspended sediment: an overview. Sediment/water interactions. Springer, Dordrecht, pp 125–149

    Google Scholar 

  98. Ankers C, Walling D, Smith R (2003) The influence of catchment characteristics on suspended sediment properties. Hydrobiologia 494(1–3):159–1616

    Article  CAS  Google Scholar 

  99. Krein A, Petticrew E, Udelhoven T (2003) The use of fine sediment fractal dimensions and colour to determine sediment sources in a small watershed. CATENA 53(2):165–179

    Article  CAS  Google Scholar 

  100. Ingold CT (1971) Fungal spores. Clarendon Press, Oxford, p 302

    Google Scholar 

  101. Tewari DN (1994) Urban forestry. Indian For 120(8):647–657

    Google Scholar 

  102. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofi MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos 118:5380–5552

    Article  CAS  Google Scholar 

  103. Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque JF, Shindell DT, Collins WJ, Dalsoren S, Faluvegi G, Folberth G, Horowitz LW, Nagashima T, Naik V, Rumbold S, Skeie R, Sudo K, Takemura T, Bergmann D, Cameron-Smith P, Cionni I, Doherty RM, Eyring V, Josse B, MacKenzie IA, Plummer D, Righi M, Stevenson DS, Strode S, Szopa S, Zeng G (2013) Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ Res Lett 8(3):1–11

    Article  CAS  Google Scholar 

  104. EEA (European Environmental Agency) (2007) Air pollution in Europe 1990–2004. Report No 2. European Environmental Agency Report No. 2/2007. Available from: http://www.eea.europa.eu

  105. Volk HE, Lurman F, Penfold B, Herz-Picciotto I, McConnell R (2013) Traffic-related air pollution, particulate matter and autism. JAMA Psychiatry 70:71–76

    Article  Google Scholar 

  106. Gawrońska H, Bakera B (2015) Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual Atmos Health 8(3):265–272.‏

    Google Scholar 

  107. Beckett KP, Freer-Smith P, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99:347–360

    Article  CAS  Google Scholar 

  108. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier Van Der Gon H, Facchini MC, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik JG, Spracklen DV, Vignati E, Wild M, Williams M, Gilardoni S (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15(14):8217–8299

    Article  CAS  Google Scholar 

  109. Ban-Weiss GA, Collins W (2015) Aerosols: role in radiative transfer. Encyclopedia of atmospheric sciences, 2nd edn, pp 66–75. https://doi.org/10.1016/b978-0-12-382225-3.00053-0

  110. Lagzi I, Mészáros R, Gelybó G, Leelőssy Á (2014) Atmospheric chemistry. Eötvös Loránd University

    Google Scholar 

  111. Kim MJ, Yeh SW, Park RJ (2016) Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985–2010. Geophys Res Lett 43(3):1364–1372

    Article  Google Scholar 

  112. Ji J, Wang G, Du X, Jin C, Yang H, Liu J, Yang Q, Si N, Li J, Chang C (2013) Evaluation of adsorbing haze PM2. 5 fine particulate matters with plants in Beijing-Tianjin-Hebei region in China. Scientia Sinica Vitae, 43(8):694–699‏

    Google Scholar 

  113. Wang L, Gao S, Liu L, Ha S (2006) Atmospheric particle-retaining capability of eleven garden plant species in Beijing. Chin J Appl Ecol 17:597–601

    CAS  Google Scholar 

  114. Zhang ZD, Xi BY, Cao ZG, Jia LM (2014) Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking populous tomentosa leaves as an example. J Appl Ecol 25:1–5

    Article  Google Scholar 

  115. Prusty BA, Mishra PC, Azeez PA (2005) Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol Environ Safety 60:228–235

    Article  CAS  Google Scholar 

  116. Freer-Smith PH, El-Khatib AA, Taylor G (2004) Capture of particulate pollution by trees: a comparison of species typical of semi-arid areas (fichus nitride and Eucalyptus globules) with European and North American species. Water Air Soil Pollut 155:173–187

    Article  CAS  Google Scholar 

  117. Zhang W, Wang B, Niu X (2015) Study on the adsorption capacities for airborne particulates of landscape plants in different polluted regions in Beijing (China). In: Bhamidiammarri R, Tota-Maharaj K (eds) Int J Environ Res Public Health 12(8):9623–9638

    Google Scholar 

  118. Li Y, Zhao M, Mildrexler DJ, Motesharrei S, Mu Q, Kalnay E, Zhao F, Li S, Wang K (2016) Potential and actual impacts of deforestation and afforestation on land surface temperature. J Geophys Res Atmos 121(24):14372–14386

    Article  Google Scholar 

  119. Wheeler M (2011). Effects of fertilizer on nitrogen cycling in residential cape cod lawns. M.Sc. thesis, Harvey Mudd College, Brown University. http://www.mbl.edu/ses/files/2014/09/Wheeler-Megan.pdf

  120. Nowak DJ, Crane D (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116(3):381–389

    Article  CAS  Google Scholar 

  121. Ni Y, Eskeland GS, Giske J, Hansen JP (2016) The global potential for carbon capture and storage from forestry. Carbon Balance Manag 11(1):3–8

    Article  CAS  Google Scholar 

  122. Akbari H (2002) Shade trees reduce building energy use and CO2 emissions from power plants. Environ Pollut 116:S119–S126

    Article  CAS  Google Scholar 

  123. USEPA (2017) United States Environmental Protection Agency. Sulfur Dioxide (SO2) Pollution. https://www.epa.gov/so2-pollution/sulfur-dioxide-basics

  124. EPA (Environmental Protection Agency) (2009) Composting. Online at http://www.epa.gov/waste/conserve/rrr/composting/index.htm

  125. Johnson J (2014) Methane’s role in climate change. Chem Eng News 92(27):10–15

    Article  Google Scholar 

  126. Brassard P, Godbout S, Raghavan V (2016) Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J Environ Manage 181:484–497

    Article  CAS  Google Scholar 

  127. WCD (Wildlife Center Drive) (2007) Gardeners can play an important role in reducing global warming. Source: National Wildlife Federation. Available at: https://www.sciencedaily.com/releases/2007/05/070519084046.htm

  128. Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manag Res 26(1):61–69

    Article  CAS  Google Scholar 

  129. Termorshuizen AJ, Moolenaar SW, Veeken AHM, Blok WJ (2004) The value of compost. Rev Environ Sci Bio/Technol 3(4):343–347

    Article  CAS  Google Scholar 

  130. University of Minnesota (2006) Grass plant growth and its relationship to lawncare. Sustainable urban landscape information series. Available at http://www.sustland.umn.edu/maint/grasspla.htm

  131. Falloon P, Jones CD, Cerri CE, Al-Adamat R, Kamoni P, Bhattacharyya T, Easter M, Paustian K, Killian K, Coleman K, Milne E (2007) Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agr Ecosyst Environ 122(1):114–124

    Article  CAS  Google Scholar 

  132. Zirkle G, Augustin B, Lal R (2009) The potential for soil organic carbon sequestration in home lawns. Presented at the ASA-CSSA-SSSA International Annual Meetings. Hemenway, Toby. Gaia’s garden: a guide to home-scale permaculture. Chelsea Green Publishing

    Google Scholar 

  133. Zirkle G, Lal R, Augustin B (2011) Modeling carbon sequestration in home lawns. HortScience 46(5):808–814

    Article  CAS  Google Scholar 

  134. Palmer C (2012) To what extent could planting trees help solve climate change? This article was written by Dr. Charles Palmer of the Grantham Research Institute on Climate Change and the Environment at LSE in collaboration with the Guardian. https://www.theguardian.com/environment/2012/nov/29/planting-trees-climate-change

  135. Hasan R, Othman N, Ismail F (2017) Tree species selection in street planting: it’s relationship with issues in urban area. Environ Behav Proc J 2(6):185–194

    Article  Google Scholar 

  136. Sjöman H, Gunnarsson A, Pauleit S, Bothmer R (2012) Selection approach of urban trees for inner city environments: larning from nature. Arboricult Urban For 38(5):194–204

    Google Scholar 

  137. FAO “Food and Agriculture Organization” (2010) Adaptation of forests to climate change. Global Change 11:403–427

    Google Scholar 

  138. Hemenway T (2009) Gias’s garden. A guide to home-scale permaculture, 2nd edn. Chelsea Green Publishing Company, USA

    Google Scholar 

  139. Koriesh EM (2018b) Studies on air pollution 4: evaluation of some ornamental trees and shrubs for reducing atmosphere carbon dioxide. In: The 8th international Arabic conference, Ismailia, Egypt, Ismailia

    Google Scholar 

  140. Doherty C (2012) Ficus religiosa—new crop summary and recommendations. New floricultural crops: formulation of production schedules for wild, non-domesticated species. University of Minnesota. https://conservancy.umn.edu/bitstream/handle/11299/143450/Ficus%20religiosa%20Paper%20Colin%20Doherty.pdf;jsessionid=3B3618BE0BB5D32CB95878FD99DC1DE3?sequence=2

  141. Padhy PK, Varshney CK (2005) Emission of volatile organic compounds (VOC) from tropical plant species in India. Chemosphere 59(11):1643–1653

    Google Scholar 

  142. El-Hadidi M, Boulos L (1989) Street trees in Egypt. American University Press, Cairo, vol 3, pp 337–349

    Google Scholar 

  143. Shaltout K (2004) An updated flora of Egypt. Divers Distrib. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1472-4642.2004.00065.x

  144. Dunnett N, Kingsbury N (2008) Planting green roofs and living walls. Timber Press Inc., Oregon, USA

    Google Scholar 

  145. Safikhani ST, Abdullah AM, Ossen DR, Baharvand M (2014) Thermal impacts of vertical greenery systems. Environm Climate Technol 14(1):5–11

    Article  Google Scholar 

  146. Mwendwa M (2016) Vertical gardens technology to help reduce climate change stress. Clim Change. http://www.talkafrica.co.ke/vertical-gardens-technology-to-reduce-climate-change-stress/

  147. Blanc P (2008) The vertical garden. From nature to the city. W. W. Norton and Company Inc., New York

    Google Scholar 

  148. Manso M, Castro-Gomes J (2015) Green wall systems: a review of their characteristics. Renew Sustain Energy Rev 41:863–871

    Article  Google Scholar 

  149. Susorova I (2015) Green facades and living walls: vertical vegetation as a construction material to reduce building cooling loads. Eco-efficient materials for mitigating building cooling needs, design, properties and applications. Elsevier Ltd., Amsterdam, pp 127–153

    Chapter  Google Scholar 

  150. Koriesh EM, Moghazy EI, Abdel Salam AM, Abd El-Mo’omen A (2018) Raising the efficiency of some ornamental plants to get rid of formaldehyde. In: The 8th international Arabic conference, Ismailia, Egypt

    Google Scholar 

  151. Fassden G (2018) Wall greening. Available at: https://www.fassadengruen.de/en/wall-greening.htm

  152. Koriesh, EM (1998) Ornamental horticulture (translated), 2nd edn. King Saud University Publications. 19/0818 ISBN:9960-05-759-3. Original text: Prentice-Hall, Inc. Englewood Clifts

    Google Scholar 

  153. Sharp R, Sable J, Bertram F, Mohan E, Peck S (2008) Introduction to Green Walls: technology, benefits & design. Green Roofs for Healthy Cities, Toronto.‏ Available at: http://greenscreen.com/docs/Education/greenscreen_Introduction%20to%20Green%20Walls.pdf

  154. Littlewood R (2008) Living roofs and walls-technical report: supporting London plan policy. Published by Greater London Authority, p 12. Available at: https://www.london.gov.uk/sites/default/files/living-roofs.pdf

  155. Turgeon N, Le Bihan Y, Buelna G, Bourgault C, Verreault S, Lessard P, Nikiema J, Heitz M (2011) Application of methanotrophic biofilters to reduce GHG generated by landfill in Quebec City (Canada). In: Brebbia CA, Longhurst JWS, Popov V (eds) Air pollution XIX (transactions on ecology and environment), vol. 147. WIT PRESS, UK

    Google Scholar 

  156. McPherson EG (1994) Cooling urban heat islands with sustainable landscapes. In: Platt Rutherford H, Rowntree Rowan A, Muick Pamela C (eds) The ecological city: preserving and restoring urban biodiversity. University of Massachusetts Press, Amherst

    Google Scholar 

  157. Chavarria G, Santos HP (2012) Plant water relations: absorption, transport and control mechanisms. In: Montanaro G (ed) Advances in selected plant physiology aspects. InTech. Available from: https://www.intechopen.com/books/advances-in-selected-plant-physiology-aspects/plant-water-relations-absorption-transport-and-control-mechanisms

  158. Raizada P, Singh A, Raghubanshi AS (2009) Comparative response of seedlings of selected native dry tropical and alien invasive species to CO2 enrichment. J Plant Ecol 2(2):69–75

    Article  Google Scholar 

  159. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  CAS  Google Scholar 

  160. Keenan TF, Prentice IC, Canadell JG, Williams CA, Wang H, Raupach M, Collatz G (2016) Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun 7:13428

    Article  CAS  Google Scholar 

  161. Nowak DJ, Kuroda M, Crane DE (2004) Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban For Urban Green 2:139–147

    Article  Google Scholar 

  162. Hasegawa S, Macdonald CA, Power SA (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob Chang Biol 22(4):1628–1643

    Article  Google Scholar 

  163. Lotfiomran N, Köhl M, Fromm J (2016) Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of European Beech (Fagus sylvatica L.). Plants 5(3):38–50

    Google Scholar 

  164. Wang L (2016) Assessment of benefits of urban forests under the ecosystem services framework: a literature review. B.Sc. dissertation. The University of British Columbia, Bachelor of Science in Forest Resource Management, Faculty of Forestry. The University of British Columbia (Vancouver)

    Google Scholar 

  165. Whitehead D (2011) Forests as carbon sinks—benefits and consequences. Tree Physiol 31(9):893–902

    Article  CAS  Google Scholar 

  166. Binkley D, Campoe O, Gspaltl M (2013) Light absorption and use efficiency in forests: why patterns differ for trees and stands. For Ecol Manage 288:5–13

    Article  Google Scholar 

  167. Charlton A, Hamilton I (2008) Tree planting: a key weapon against global warming. Carbon Posit. Available at: http://forestindustries.eu/de/content/tree-planting-key-weapon-against-global-warming

  168. Koriesh EM (2001) Studies on air pollution. 2. Effects of greenbelts. In: The Fifth Arabian Horticulture Conference, Ismailia, Egypt, vol 2, pp 315–320

    Google Scholar 

  169. Koriesh EM, Moghazy EI (2013) Studies on indoor air pollution. 9- air ions, oxygen evolution & air pollution tolerant index (APTI) of some indoor plants. In: The seventh international conference for horticulture, Held at Suez Canal University from 24–26 March 2013. Hortsci J Suez Canal Univ 1:339–34

    Google Scholar 

  170. Koriesh EM, Abd El-Fattah YM (2008) Studies on air pollution. 3: Evaluation of some shrubs to their oxygen, negative air ions evolutions and air pollution tolerance index in relation to some fertilization treatments. Agric Res J 8:63–68

    Google Scholar 

  171. Khan FI, Abbasi S (2000) Attenuation of gaseous pollutants by greenbelts. Environ Monit Assess 64:457–475

    Article  CAS  Google Scholar 

  172. Ruth AE, William RE (1994) The encyclopedia of the environment. The Rene Dubor Centre for Human Environments, Houghton Miffin Company, U.S.A

    Google Scholar 

  173. Larkham A, Adams R (2011) The post-war reconstruction planning of London: a wider perspective. Planning Birmingham School of the Built Environment, Birmingham City University. ISBN 978-1-904839-54-5. http://www.bcu.ac.uk/cmsproxyimage?path=/_media/docs/cesr_working_paper_8_2011_larkham_adams.pdf

  174. Hill AC (1971) Vegetation: a sink for atmospheric pollutants. J Air Pollut Control Assoc 21:341–346

    Article  CAS  Google Scholar 

  175. Lin DA (1976) Air pollution-threat and responses. Adison Wesley Publishing Company, London

    Google Scholar 

  176. Smith WH (1990) Forest as sinks for air contaminants: vegetative compartment. Air pollution and forests: interactions between air contaminants and forest ecosystems, 2nd edn. Series on environmental management. Springer, New York, pp 147–180. https://link.springer.com/content/pdf/10.1007%2F978-1-4684-0104-2.pdf

  177. Rawat JS, Banerjee SP (1996) Urban forestry for improvement of environment. J. Energy Environ Monitor 12(2):109–116

    Google Scholar 

  178. William HS (1990) Interaction between air contaminants and forest ecology. In: Air pollution and forest, 2nd edn. Springer, New York, pp 618

    Google Scholar 

  179. Kabel RL, O’Dell RA, Taheri M, Davis D (1976) A preliminary model of gaseous pollutant uptake by vegetation. Center for Air Environment Studies, Publ. No. 455–76

    Google Scholar 

  180. Earth talk, Social Sciences (2018) Which trees offset global warming best? https://www.thoughtco.com/which-trees-offset-global-warming-1204209

Download references

Acknowledgements

We would like to express our deepest appreciation to Prof. Dr. Fouad Hassan, Prof. Dr. M. Abd El Mohsen, Prof. Dr. Khaled Ibrahim and Dr. Mahmoud Mokhtar Hefni who provided us with the possibility to complete this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eid M. Koriesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koriesh, E.M., Abo-Soud, I.H. (2020). Facing Climate Change: Urban Gardening and Sustainable Agriculture. In: Ewis Omran, ES., Negm, A. (eds) Climate Change Impacts on Agriculture and Food Security in Egypt. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-41629-4_16

Download citation

Publish with us

Policies and ethics