Skip to main content

Vulnerability of Crop Pollination Ecosystem Services to Climate Change

  • Chapter
  • First Online:
Climate Change Impacts on Agriculture and Food Security in Egypt

Part of the book series: Springer Water ((SPWA))

Abstract

Crop pollination is one of the most valuable ecosystem services. It plays an important part in human food security. Pollination services are mainly provided by wild pollinator species as solitary bees and by commercially managed honeybees. Pollinators also have a key role in maintaining other ecosystem services including ensuring biodiversity. Declines in bee diversity over the last two decade have been recorded in many countries worldwide. Some drivers generate many stressors for pollinators such as loss of habitat, nest fragmentation, urbanization, reduced floral resource supply, increasing of pests and diseases, extensive use of pesticides and climate change. Climate change is potentially the most serious threat to pollinator biodiversity, reducing crop productivity and negatively impacting global food security. This chapter focuses on explaining the evidence of the biotic responses to the slight climate changes that occurred recently. In Egypt, many studies have proven that many bee species including honeybees are under huge threats affecting the agriculture production and plant vegetation. To mitigate this great problem, several attempts were conducted in order to conserve and propagate the most vulnerable solitary bee species through re-nesting them in artificial nests to be used for crop pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waser NM (2005) Specialization and generalization in plant-pollinator interactions. Chicago University Press, pp 1–441

    Google Scholar 

  2. Michener CD (2007) The world of the bees, 2nd edn. Johns Hopkins University Press, Baltimore, xvi+953 pp

    Google Scholar 

  3. Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, D.C.

    Google Scholar 

  4. Dafni A, O’Toole C (1994) Pollination syndromes in the Mediterranean: generalizations and peculiarities. In: Arianoutsou M, Groves R (eds) Plant-animal interactions in Mediterranean-type ecosystems. Tasks for vegetation science, vol 34. Dordrecht, Boston & London, pp 125–135

    Google Scholar 

  5. Daily GC (1997) Nature’s services. Societal dependence on natural ecosystems. Island Press, Washington, D.C., 392 pp

    Google Scholar 

  6. Freitas BM, Paxton RJ (1998) A comparison of two pollinators: the introduced honey bee Apis mellifera and an indigenous bee Centris tarsata on cashew Anacardium occidentale in its native range of NE Brazil. J Appl Ecol 35(1):109–121

    Article  Google Scholar 

  7. Garibaldi LA, Dewenter IS, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CL, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  Google Scholar 

  8. James RR, Pitts-Singer TL (2008) Bee pollination in agricultural ecosystems. Oxford University Press, New York, 232 pp

    Google Scholar 

  9. Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc Natl Acad Sci USA 103:13890–13895

    Article  CAS  Google Scholar 

  10. Chagnon M, Gingras J, Deoliveira D (1993) Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J Econ Entomol 86:416–420

    Article  Google Scholar 

  11. Brown, MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416

    Google Scholar 

  12. Dicks LV, Abrahams A, Atkinson J, Biesmeijer J, Bourn N, Brown C, Brown JFM, Carvell C, Connolly C, Cresswell EJ, Croft P, Darvill B, De Zylva P, Effingham P, Fountain M, Goggin A, Harding D, Harding T, Hartfield C, Heard SM, Heathcote R, Heaver D, Holland J, Howe M, Hughes B, Huxley T, Kunin W, Little J, Mason C, Memmott J, Osborne J, Pankhurst T, Paxton JR, Pocock JOM, Potts GS, Power FE, Raine EN, Ranelagh E, Roberts S, Saunders R, Smith K, Smith MR, Sutton P, Tilley ANL, Tinsley A, Tonhasca A, Vanbergen JA, Webster S, Wilson A, Sutherland JW (2013) Identifying key knowledge needs for evidence-based conservation of wild insect pollinators: a collaborative cross-sectoral exercise. Insect Conserv Divers 6:339–353

    Article  Google Scholar 

  13. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353. https://doi.org/10.1016/j.tree.2010.01.007

    Article  Google Scholar 

  14. Vanbergen AJ, Baude M, Biesmeijer JC, Britton NF, Brown MJF, Bryden J, Budge GE, Bull JC, Carvell C, Challinor AJ, Connolly CN, Evans DJ, Feil EJ, Garratt MP, Greco MK, Heard MS, Jansen VAA, Keeling MJ, Kunin WE, Marris GC, Memmott J, Murray JT, Nicolson SW, Osborne JL, Paxton RJ, Pirk CWW, Polce C, Potts SG, Priest NK, Raine NE, Roberts S, Ryabov EV, Shafir S, Shirley MDF, Simpson SJ, Stevenson PC, Stone GN, Termansen M, Wright GA (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  15. TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundation. Earthscan, Cambridge

    Google Scholar 

  16. MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, 2005

    Google Scholar 

  17. Pudasaini R, Chalise M, Poudel PR, Pudasaini K, Aryal P (2015) Effect of climate change on insect pollinator: a review. N Y Sci J 8(3):39–42

    Google Scholar 

  18. Albrechdt M, Schmid B, Hautier Y, Müller CB (2012) Diverse pollinator communities enhance plant reproductive success. Proc R Soc Lond B Biol Sci 279(1748):4845–4852. https://doi.org/10.1098/rspb.2012.1621

    Article  Google Scholar 

  19. Breeze TD, Vaissière BE, Bommarco R, Petanidou T, Seraphides N, Kozák L, Scheper J, Biesmeijer JC, Kleijn D, Gyldenkærne S, Moretti M, Holzschuh A, Steffan-Dewenter I, Stout JC, Pärtel M, Zobel M, Potts SG (2014) Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS One 9(1):e2099. https://doi.org/10.1371/journal.pone.0082996

    Article  CAS  Google Scholar 

  20. Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol Sci 274(1608):303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  Google Scholar 

  21. Prescott-Allen R, Prescott-Allen C (1990) How many plants feed the world? Conserv Biol 4(4):365–374. https://doi.org/10.1111/j.1523-1739.1990.tb00310.x

    Article  Google Scholar 

  22. Roubik DW (1995) Pollination of cultivated plants in the tropics. FAO, Rome

    Google Scholar 

  23. Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42(1):1–22. https://doi.org/10.1146/annurev-ecolsys-102710-145042

    Article  Google Scholar 

  24. Aguilar R, Ashworth L, Galetto L, Aizen M (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  Google Scholar 

  25. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    Article  Google Scholar 

  26. White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2042

    Article  CAS  Google Scholar 

  27. Bauer DM, Wing IS (2010) Economic consequences of pollinator declines: a synthesis. Agric Resour Econ Rev 39(3):368–383

    Google Scholar 

  28. Tirado R, Simon G, Johnston P (2013) Bees in decline: a review of factors that put pollinators and agriculture in Europe at risk. Greenpeace Research Laboratories report (review) 1

    Google Scholar 

  29. LeBuhn G, Droege S, Connor E, Gemmill-Herren B, Azzu N (2016) Protocol to detect and monitor pollinator communities: guidance for practitioner. Food and Agriculture Organization of the United Nations, pp 1–64

    Google Scholar 

  30. Johannsmeier MF (2001) Beekeeping in South Africa, 3rd edn. Plant Protection Research Institute, Pretoria

    Google Scholar 

  31. Kevan P, Phillips T (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol 5(1):8

    Article  Google Scholar 

  32. Morse RA, Calderone NW (2000) The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult 128:15 pp inserts

    Google Scholar 

  33. Robinson WS, Nowogrodzki R, Morse RA (1989) The value of honey bees as pollinators of USA crops. Part II of a two-part series. Am Bee J 129:477–487

    Google Scholar 

  34. Southwick EE, Southwick LJR (1992) Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J Econ Entomol 85(3):621–633

    Article  Google Scholar 

  35. EPA (2017) Climate impacts on ecosystems. United States Environmental Protection Agency. https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-ecosystems_.html

  36. Kevan PG, Imperatriz-Fonseca VL (2002) Pollinating bees: the conservation link between agriculture and nature. Ministry of Environment, Brasilia-DF, Brazil

    Google Scholar 

  37. Nabhan GP, Buchmann SL (1997) Services provided by pollinators. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. CoVelo: Island Press, Washington, D.C.

    Google Scholar 

  38. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  39. Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  Google Scholar 

  40. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717

    Article  Google Scholar 

  41. Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme P, Klotz S, Kühn I, Moora M, Nielsen A, Ohlemuller R, Petanidou T, Potts SG, Pysek P, Stout JC, Sykes M, Tscheulin T, Vilà M, Wather GR, Westphal C (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795

    Google Scholar 

  42. Bartomeus I, Park MG, Gibbs J, Danforth BN, Lakso AN, Winfree R (2013) Biodiversity ensures plant-pollinator phenological synchrony against climate change. Ecol Lett 16:1331–1338

    Article  Google Scholar 

  43. Papanikolaou AD, Kühn I, Frenzel M, Schweiger O (2016) Semi-natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol 54(2):527–536

    Article  Google Scholar 

  44. Thomson DM (2016) Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol Lett 19:1247–1255

    Article  Google Scholar 

  45. IPCC (2014) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  46. IPCC (2007a) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, 104 pp

    Google Scholar 

  47. Kjøhl M, Nielsen A, Stenseth NC (2011) Potential effects of climate change on crop pollination. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  48. Sutherst RW, Maywald GF, Bourne AS (2007) Including species interactions in risk assessments for global change. Glob Change Biol 13:1843–1859

    Article  Google Scholar 

  49. van der Putten WH, de Ruiter PC, Bezemer TM, Harvey JA, Wassen M, Wolters V (2004) Trophic interactions in a changing world. Basic Appl Ecol 5:487–494

    Article  Google Scholar 

  50. Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540(7632):220–229. https://doi.org/10.1038/nature20588

    Article  CAS  Google Scholar 

  51. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67. https://doi.org/10.1038/nature11148. PMID 22678280

  52. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  CAS  Google Scholar 

  53. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  54. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  55. Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc B Biol Sci 365(1554):2973–2989. https://doi.org/10.1098/rstb.2010.0158

    Article  Google Scholar 

  56. IPCC (2007b) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 976 pp

    Google Scholar 

  57. World Bank (2016) Climate change: likely impacts on African crops, livestock & farm types. http://go.worldbank.org/NKNKPX8FL0

  58. Andy J, Upadhyaya H, Gowda CLL, Aggarwal PK, Fujisaka S, Anderson B (2008) Climate change and its effect on conservation and use of plant genetic resources for food and agriculture and associated biodiversity for food security. Monograph. Food and Agriculture Organization of the United Nations, UK

    Google Scholar 

  59. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Article  Google Scholar 

  60. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37. https://doi.org/10.1146/annurev-marine-041911-111611

    Article  Google Scholar 

  61. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296(5573):1689–1691. https://doi.org/10.1126/science.1071617. PMID: 12040195

  62. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89(2):353–362. https://doi.org/10.1890/06-2128.1

    Article  Google Scholar 

  63. Roberts EH, Hadley P, Summerfield RJ (1985) Effects of temperature and photoperiod on flowering in chickpeas (Cicer arietinum L.). Ann Bot 55:881–892

    Article  Google Scholar 

  64. Wallace DH, Yan W (1998) Plant breeding and whole-system physiology. Improving adaptation, maturity and yield. CAB International, Wallingford, UK, 390 pp

    Google Scholar 

  65. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. https://doi.org/10.1038/nature06937

    Article  CAS  Google Scholar 

  66. Estrella N, Sparks T, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Change Biol 13:1737–1747

    Article  Google Scholar 

  67. Hu Q, Weiss A, Feng S, Baenziger P (2005) Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric For Meteorol 135:284–290

    Article  Google Scholar 

  68. Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  69. Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol 138:82–92

    Article  Google Scholar 

  70. Williams T, Abberton M (2004) Earlier flowering between 1962 and 2002 in agricultural varieties of white clover. Oecologia 138:122–126

    Article  CAS  Google Scholar 

  71. Sadras VO, Connor DJ (1991) Physiological basis of the response of harvest index to the fraction of water transpired after anthesis: a simple model to estimate harvest index for determinate species. Field Crops Res 26:227–239

    Article  Google Scholar 

  72. Moriondo M, Bindi M (2007) Impact of climate change on the phenology of typical Mediterranean crops. Ital J Agrometeorol 3:5–12

    Google Scholar 

  73. Bindi M, Moriondo M (2005) Impact of a 2°C global temperature rise on the Mediterranean region: agriculture analysis assessment. In: Climate change impacts in the Mediterranean resulting from a 2°C global temperature rise. A WWF report. http://assets.panda.org/downloads/medreportfinal8july05.pdf

  74. Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Natl Acad Sci USA. PNAS 104(4):1278–1282. https://doi.org/10.1073/pnas.0608379104

  75. McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation & vulnerability, contribution of working group II to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, 1000 pp

    Google Scholar 

  76. Barnabás B, Järgen K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    Google Scholar 

  77. Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682

    Article  CAS  Google Scholar 

  78. Shebl M, Kamel S, Mahfouz H (2013) Bee fauna (Apoidea: Hymenoptera) of the Suez Canal region, Egypt. J Apic Sci 57(1):33–44

    Google Scholar 

  79. Blüthgen P (1933) Ein beitrag zur kenntnis der bienenfauna Agyptens (Hymenoptera: Apidae-Halictidae-Halictinae). Bull Soc R Entomol Egypte 17:1–27

    Google Scholar 

  80. Blüthgen P (1934) Zweiter beitrag zur kenntnis der Halictinenfauna Agyptens (Hymenoptera: Apidae-Halictidae-Halictinae). Bull Soc R Entomol Egypte 18:188–200

    Google Scholar 

  81. El Akkad MK, Kamel SM (2002) Revision of the genus Sphecodes latreille of Egypt (Hymenoptera: Halictidae) Egypt. Agric Res J 80(4):1579–1595

    Google Scholar 

  82. Ibrahim MM (1973) Breeding and propagation of some efficient insect pollinators in newly reclaimed land in Egypt. Final technical report, pp 1–75

    Google Scholar 

  83. Ibrahim MM (1979) Breeding and propagation of some efficient insect pollinators in newly reclaimed land in Egypt. Project report no. 4, pp 1–67

    Google Scholar 

  84. Moustafa MA, El Berry AA (1976) Morphological studies on Osmia submicans. Mitt Zool Mus Berlin 52:209–225

    Article  Google Scholar 

  85. Moustafa MA, El-Hefny AM, Abd El-Salam AL, Salem MM (1979) Taxonomical studies on some common Andrena spp. In: Egypt. 185-bee symposium. (Affiliated to 3rd Arab pesticide conference), Tanta University, pp 185–238

    Google Scholar 

  86. Priesner H (1957) A review of the Anthophora species of Egypt. Bull Soc Entomol Egypte, XLI, pp 1–115

    Google Scholar 

  87. Rashad SE (1979) Utilization of non-Apis bees as crop pollinators. Annual report no. II, pp 1–40

    Google Scholar 

  88. Rashad SE (1980) Utilization of non-Apis bees as a crop pollinator. Annual report no. III, pp 1–34

    Google Scholar 

  89. Shebl AM, Patiny S, Michez D (2015) Supplementary note on the solitary bee fauna from the Suez Canal region of Egypt (Hymenoptera: Apoidea). J Melittol 47:1–5

    Article  Google Scholar 

  90. Shebl MA, Mahmoud MF (2015) The bee diversity (Hymenoptera: Apoidea) visiting broad bean (Vicia faba L.) flowers in Egypt. Zool Middle East 61(3):256–263. https://doi.org/10.1080/09397140.2015.1069245

  91. Shoukry AM, El Akkad MK, Kamel SM, El Akkad S (2004) Revision of the subfamily Nomiinae of Egypt (Hymenoptera: Halictidae). Agric Res J Suez Canal Univ 3(2):145–158

    Google Scholar 

  92. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    Article  CAS  Google Scholar 

  93. Shebl MA (2017) Discovery of Apis florea colonies in northeastern Egypt. Afr Entomol 25(1):248–249

    Article  Google Scholar 

  94. Kamel SM, Abu Hashesh TA, Osman MA, Shebl MA (2007) A new model of polystyrene foam for renesting leafcutting bees (Megachile spp., Megachilidae, Hymenoptera). Agric Res J Suez Canal Univ 7(2):97–101

    Google Scholar 

  95. Shebl MA, Al Aser RM, Ibrahim A (2016) Nest architecture and nest soil characteristics of long-horned bee Eucera nigrilabris (Hymenoptera, Apidae). Sociobiology 63(4):1031–1037

    Article  Google Scholar 

  96. Forrest JRK (2015) Plant—pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13. https://doi.org/10.1111/oik.01386

  97. Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–495

    Google Scholar 

  98. Kamel SM (1981) Studies on insect pollinators at Ismailia Governorate with special reference to the biology and ecology of Anthophora atriceps (Hymenoptera: Anthophoridae). M.Sc. thesis, Faculty of Agriculture, Cairo University, Egypt

    Google Scholar 

  99. Osman MAM (1998) Ecological studies on some insect pollinators of broad beans Vicia faba with special reference to Chalicodoma siculum Rossi. M.Sc. thesis, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt

    Google Scholar 

  100. Graystock P, Yates K, Darvill B, Goulson D, Hughes WOH (2013a) Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J Invertebr Pathol

    Google Scholar 

  101. Graystock P, Yates K, Evison SEF, Darvill B, Goulson D, Hughes WOH (2013b) The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J Appl Ecol

    Google Scholar 

  102. Murray TE, Coffey MF, Kehoe E, Horgan FG (2013) Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biol Conserv 159:269–276

    Article  Google Scholar 

  103. Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, van Engelsdorp D, Lipkin WL, dePamphilis CW, Toth AL, Cox-Foster DL (2010) RNA viruses in Hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis Hymenopteran species. PLoS One 5:e14357

    Article  CAS  Google Scholar 

  104. Pirk CW, Strauss U, Yusuf A, Démares F, Human H (2015) Honeybee health in Africa—a review. Apidologie. https://doi.org/10.1007/s13592-015-0406-6

    Article  Google Scholar 

  105. Haddad N, Adjlane N, Loucif-Ayad W, Shebl MA, Saba M, Albaba I, El-Obeid D, Sabah M, Giusti M, Felicioli A (2015) Presence and infestation rate of Senotainia tricuspis (Meigen) (Diptera, Sarcophagidae) on honey bees in the Mediterranean region. J Apic Res 54(2):121–122

    Article  Google Scholar 

  106. Haddad N, Noureddine A, Al-Shagour B, Loucif-Ayad W, El-Niweiri MA, Anaswah E, Hammour WA, El-Obeid D, Imad A, Shebl MA, Almaleky AS, Nasher A, Walid N, Bergigui MF, Yañez O, de Miranda JR (2017) Distribution and variability of deformed wing virus of honeybees (Apis mellifera) in the Middle East and North Africa. Insect Sci 24:103–113. https://doi.org/10.1111/1744-7917.12277

    Article  Google Scholar 

  107. Haddad N (2011) Honey bee viruses, disease and hive management in the Middle East and their relation to the colony collapse disorder and bee losses. Uludag Bee J 11(1):17–24

    Google Scholar 

  108. Hassan AR (2009) Proceedings of the 4th COLOSS conference

    Google Scholar 

  109. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Let 6(4):562–565

    Article  Google Scholar 

  110. Blacquiere T, Smagghe G, van Gestel CAM, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992

    Article  CAS  Google Scholar 

  111. Colin ME, Bonmatin JM, Moineau I, Gaimon C, Brun S, Vermandere JP (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch Environ Contam Toxicol 47:387–395

    Article  CAS  Google Scholar 

  112. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  113. Heylen K, Gobin B, Arckens L, Huybrechts R, Billen J (2010) The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie. https://doi.org/10.1051/apido/2010043

  114. Roat TC, Carvalho SM, Nocelli RCF, Silva-Zacarin ECM, Palma MS, Malaspina O (2013) Effects of sublethal dose of fipronil on neuron metabolic activity of Africanized honeybees. Arch Environ Contam Toxicol 64:456–466

    Article  CAS  Google Scholar 

  115. Rossi CA, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O (2013) Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch Environ Contam Toxicol 65:234–243

    Article  CAS  Google Scholar 

  116. Schmuck R (2004) Effects of a chronic dietary exposure of the honeybee Apis mellifera (Hymenoptera: Apidae) to imidacloprid. Arch Environ Contam Toxicol 47:471–478

    Article  CAS  Google Scholar 

  117. Williamson SM, Wright GA (2013) Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J Exp Biol 216(10):1799–1807

    Article  CAS  Google Scholar 

  118. Williamson SM, Baker DD, Wright GA (2013) Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera. Invert Neurosci 13:63–70

    Article  CAS  Google Scholar 

  119. Yang EC, Chuang YC, Chen L, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101:1743–1748

    Article  CAS  Google Scholar 

  120. Smith KM, Loh EH, Rostal MK, Zambrana-Torrelio CM, Mendiola L, Daszak P (2013) Pathogens, pests, and economics: drivers of honey bee colony declines and losses. EcoHealth 10:434–445. https://doi.org/10.1007/s10393-013-0870-2

    Article  Google Scholar 

  121. Schacker M (2008) A spring without bees: how colony collapse disorder has endangered our food supply. The Lyons Press, Guilford, Connecticut

    Google Scholar 

  122. Al Naggar Y, Codling G, Vogt A, Naiem E, Mohamed M, Seif A, Giesy JP (2015) Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicol Environ Saf 114:1–8

    Article  CAS  Google Scholar 

  123. APC (2016) The Agricultural Pesticides Committee. Ministry of Agriculture and Land Reclamation, Egypt

    Google Scholar 

  124. Codling G, Al Naggar Y, Giesy JP, Robertson AJ (2016) Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere 144:2321–2328

    Article  CAS  Google Scholar 

  125. Hassan AH, Kamel SM, Osman MAM, Mahmoud MF, Bedeir EH, Shebl MA (2016a) Conservation of the mason bees Osmia latrellei Spinola (Hymenoptera Megachilidae) in Egypt. Egypt J Appl Sci 31(6):73–84

    Google Scholar 

  126. Hassan HH, Kamel SM, Osman MAM, Mahmoud MF, Bedeir EH, Shebl MA (2016b) Ecological notes on the nest construction and cell provisioning of Osmia latrellei Spinola (Hymenoptera: Megachilidae) in Egypt. Egypt J Appl Sci 31(6):85–95

    Google Scholar 

  127. Shebl MA, Kamel SM, Abu Hashesh TA, Osman MA (2008a) Seasonal abundance of leafcutting bees (Megachile minutissima, Megachilidae, Hymenoptera). World J Agric Sci 4(2):280–287

    Google Scholar 

  128. Shebl MA, Kamel SM, Abu Hashesh TA, Osman MA (2008b) The impact of leafcutting bees (Megachile minutissima, Megachilidae, Hymenoptera) (Radoszkowski, 1876) artificial nest sites on seed production of alfalfa, Ismailia, Egypt. Agricultura 5:33–35

    Google Scholar 

  129. Shebl MA, Kamel SM, Abu Hashesh TA, Osman MA (2009a) The most common insect species in Alfalfa field in Egypt. Acad J Entomol 1(2):27–31

    Google Scholar 

  130. Shebl MA, Kamel SM, Abu Hashesh TA, Osman MAM (2009b) The impact of using leafcutting bees (Megachilidae: Hymenoptera) with different fertilization treatments on alfalfa seed production. J Soil Plant Nutr 9(2):134–141

    Google Scholar 

  131. Shoukry AA, Kamel SM, Abu-Hashish TA, Osman MA (1997) Ecological studies of mason bee Chalicaodoma siculum Rossi at Ismailia Governorate. In: Proceeding of 7th national conference of pests & diseases of vegetables & fruits, vol 2, Ismailia, Egypt, pp 362–379

    Google Scholar 

  132. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B 276:903–909

    Article  CAS  Google Scholar 

  133. Kovács-Hostyánszki A, Kőrösi A, Orci KM, Batáry P, Báldi A (2011) Set-aside promotes insect and plant diversity in a Central European country. Agric Ecosyst Environ 141:296–301

    Article  Google Scholar 

  134. Batary P, Andras B, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B Biol Sci 278:1894–1902

    Article  Google Scholar 

  135. Cane JH, Minckley RL, Kervin LJ, Roulston TH, Williams NM (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol Appl 16:632–644

    Article  Google Scholar 

  136. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361

    Article  Google Scholar 

  137. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci 99:16812–16816

    Article  CAS  Google Scholar 

  138. Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    Article  Google Scholar 

  139. Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer PG (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  140. Memmott J, Carvell C, Pywell RF, Craze PG (2010) The potential impact of global warming on the efficacy of field margins sown for the conservation of bumble-bees. Philos Trans R Soc Lond B Biol Sci 365:2071–2079

    Article  Google Scholar 

  141. Menz MHM, Phillips RD, Winfree R, Kremen C, Aizen MA, Johnson SD, Dixon KW (2011) Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends Plant Sci 16:4–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. M. Osman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osman, M.A.M., Shebl, M.A. (2020). Vulnerability of Crop Pollination Ecosystem Services to Climate Change. In: Ewis Omran, ES., Negm, A. (eds) Climate Change Impacts on Agriculture and Food Security in Egypt. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-41629-4_11

Download citation

Publish with us

Policies and ethics