Skip to main content

Impact of Multiple Reflections on Secrecy Capacity of Indoor VLC System

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11999))

Included in the following conference series:

Abstract

While visible light communication (VLC) is expected to have a wide range of applications in the near future, the security vulnerabilities of this technology have not been well understood so far. In particular, due to the extremely short wavelength of visible light, the VLC channel presents several unique characteristics than its radio frequency counterparts, which impose new features on the VLC security. Taking a physical-layer security perspective, this paper studies the intrinsic secrecy capacity of VLC as induced by its special channel characteristics. Different from existing models that only consider the specular reflection in the VLC channel, a modified Monte Carlo ray tracing model is proposed to account for both the specular and the diffusive reflections, which is unique to VLC. Based on this model the upper and the lower bounds of the VLC secrecy capacity are derived, which allow us to evaluate the VLC communication confidentiality against a comprehensive set of factors, including the locations of the transmitter, receiver, and eavesdropper, the VLC channel bandwidth, the ratio between the specular and diffusive reflections, and the reflection coefficient. Our results reveal that due to the different types of reflections, the VLC system becomes more vulnerable at specific locations where strong reflections exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Moliki, Y.M., Alresheedi, M.T., Al-Harthi, Y.: Robust key generation from optical OFDM signal in indoor VLC networks. IEEE Photonics Technol. Lett. 28(22), 2629–2632 (2016). https://doi.org/10.1109/LPT.2016.2609683

    Article  Google Scholar 

  2. Al-Moliki, Y.M., Alresheedi, M.T., Al-Harthi, Y.: Secret key generation protocol for optical OFDM systems in Indoor VLC networks. IEEE Photonics J. 9(2), 1–15 (2017). https://doi.org/10.1109/JPHOT.2017.2667400

    Article  Google Scholar 

  3. Arfaoui, M.A., Ghrayeb, A., Assi, C.: On the achievable secrecy rate of the MIMO VLC Gaussian wiretap channel. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–5, October 2017. https://doi.org/10.1109/PIMRC.2017.8292592

  4. Arfaoui, M.A., Ghrayeb, A., Assi, C.: Secrecy rate closed-form expressions for the SISO VLC wiretap channel with discrete input signaling. IEEE Commun. Lett. 22(7), 1382–1385 (2018). https://doi.org/10.1109/LCOMM.2018.2829479

    Article  Google Scholar 

  5. Barry, J.R., Kahn, J.M., Krause, W.J., Lee, E.A., Messerschmitt, D.G.: Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993). https://doi.org/10.1109/49.219552

    Article  Google Scholar 

  6. Blinowski, G.J.: The feasibility of launching rogue transmitter attacks in indoor visible light communication networks. Wireless Pers. Commun., 1–19 (2017). https://doi.org/10.1007/s11277-017-4781-3

  7. Carruthers, J.B., Carroll, S.M.: Statistical impulse response models for indoor optical wireless channels. Int. J. Commun. Syst. 18(3), 267–284 (2005). https://doi.org/10.1002/dac.703

    Article  Google Scholar 

  8. Chen, X., Jiang, M.: Adaptive statistical Bayesian MMSE channel estimation for visible light communication. IEEE Trans. Signal Process. 65(5), 1287–1299 (2017). https://doi.org/10.1109/TSP.2016.2630036

    Article  MathSciNet  MATH  Google Scholar 

  9. Cho, S., Chen, G., Chun, H., Coon, J.P., O’Brien, D.: Impact of multipath reflections on secrecy in VLC systems with randomly located eavesdroppers. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, April 2018. https://doi.org/10.1109/WCNC.2018.8377184

  10. Cho, S., Chen, G., Coon, J.P.: Secrecy analysis in visible light communication systems with randomly located eavesdroppers. In: 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 475–480, May 2017. https://doi.org/10.1109/ICCW.2017.7962703

  11. Chowdhury, M.I.S., Zhang, W., Kavehrad, M.: Combined deterministic and modified monte carlo method for calculating impulse responses of indoor optical wireless channels. J. Lightwave Technol. 32(18), 3132–3148 (2014). https://doi.org/10.1109/JLT.2014.2339131

    Article  Google Scholar 

  12. Classen, J., Chen, J., Steinmetzer, D., Hollick, M., Knightly, E.: The spy next door: eavesdropping on high throughput visible light communications. In: Proceedings of the 2nd International Workshop on Visible Light Communications Systems, VLCS 2015, pp. 9–14. ACM, New York (2015). https://doi.org/10.1145/2801073.2801075

  13. Classen, J., Steinmetzer, D., Hollick, M.: Opportunities and pitfalls in securing visible light communication on the physical layer. In: Proceedings of the 3rd Workshop on Visible Light Communication Systems, VLCS 2016, pp. 19–24. ACM, New York (2016). https://doi.org/10.1145/2981548.2981551

  14. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)

    MATH  Google Scholar 

  15. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with MATLAB. CRC Press, Boca Raton (2012)

    Google Scholar 

  16. Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

  17. Lapidoth, A., Moser, S.M., Wigger, M.A.: On the capacity of free-space optical intensity channels. IEEE Trans. Inf. Theory 55(10), 4449–4461 (2009). https://doi.org/10.1109/TIT.2009.2027522

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, K., Park, H., Barry, J.R.: Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 15(2), 217–219 (2011). https://doi.org/10.1109/LCOMM.2011.010411.101945

    Article  Google Scholar 

  19. Liu, X., Wei, X., Guo, L., Liu, Y., Zhou, Y.: A new eavesdropping-resilient framework for indoor visible light communication. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, December 2016. https://doi.org/10.1109/GLOCOM.2016.7841521

  20. Lopez-Hernandez, F., Perez-Jimenez, R., Santamaria, A.: Ray-tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels. Opt. Eng. 39(10), 2775–2780 (2000)

    Article  Google Scholar 

  21. Marin-Garcia, I., Ramirez-Aguilera, A.M., Guerra, V., Rabadan, J., Perez-Jimenez, R.: Data sniffing over an open VLC channel. In: 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–6, July 2016. https://doi.org/10.1109/CSNDSP.2016.7573963

  22. Mostafa, A., Lampe, L.: Securing visible light communications via friendly jamming. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp. 524–529, December 2014. https://doi.org/10.1109/GLOCOMW.2014.7063485

  23. Mostafa, A., Lampe, L.: Physical-layer security for MISO visible light communication channels. IEEE J. Sel. Areas Commun. 33(9), 1806–1818 (2015). https://doi.org/10.1109/JSAC.2015.2432513

    Article  Google Scholar 

  24. Mukherjee, A.: Secret-key agreement for security in multi-emitter visible light communication systems. IEEE Commun. Lett. 20(7), 1361–1364 (2016). https://doi.org/10.1109/LCOMM.2016.2558562

    Article  Google Scholar 

  25. Ozel, O., Ekrem, E., Ulukus, S.: Gaussian wiretap channel with amplitude and variance constraints. IEEE Trans. Inf. Theory 61(10), 5553–5563 (2015). https://doi.org/10.1109/TIT.2015.2459705

    Article  MathSciNet  MATH  Google Scholar 

  26. Perez-Jimenez, R., Berges, J., Betancor, M.J.: Statistical model for the impulse response on infrared indoor diffuse channels. Electron. Lett. 33(15), 1298–1300 (1997). https://doi.org/10.1049/el:19970866

    Article  Google Scholar 

  27. Rodríguez Pérez, S., Pérez Jiménez, R., López Hernández, F., González Hernández, O., Ayala Alfonso, A.: Reflection model for calculation of the impulse response on IR-wireless indoor channels using ray-tracing algorithm. Microw. Opt. Technol. Lett. 32(4), 296–300 (2002). https://doi.org/10.1002/mop.10159

    Article  Google Scholar 

  28. Wang, J., Hu, Q., Wang, J., Chen, M., Wang, J.: Tight bounds on channel capacity for dimmable visible light communications. J. Lightwave Technol. 31(23), 3771–3779 (2013). https://doi.org/10.1109/JLT.2013.2286088

    Article  Google Scholar 

  29. Wang, J., Lin, S., Liu, C., Wang, J., Zhu, B., Jiang, Y.: Secrecy capacity of indoor visible light communication channels. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6, May 2018. https://doi.org/10.1109/ICCW.2018.8403760

  30. Wu, D., Ghassemlooy, Z., Le-Minh, H., Rajbhandari, S., Chao, L.: Channel characteristics analysis of diffuse indoor cellular optical wireless communication systems. In: 2011 Asia Communications and Photonics Conference and Exhibition (ACP), pp. 1–6, November 2011. https://doi.org/10.1117/12.905663

  31. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975). https://doi.org/10.1002/j.1538-7305.1975.tb02040.x

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, Y., Frahm, J.M., Monrose, F.: Watching the watchers: automatically inferring TV content from outdoor light effusions. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS 2014, pp. 418–428. ACM, New York (2014). https://doi.org/10.1145/2660267.2660358

  33. Yin, L., Haas, H.: Physical-layer security in multiuser visible light communication networks. IEEE J. Sel. Areas Commun. 36(1), 162–174 (2018). https://doi.org/10.1109/JSAC.2017.2774429

    Article  Google Scholar 

  34. Zaid, H., Rezki, Z., Chaaban, A., Alouini, M.S.: Improved achievable secrecy rate of visible light communication with cooperative jamming. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1165–1169, December 2015. https://doi.org/10.1109/GlobalSIP.2015.7418381

  35. Zhang, D., Hranilovic, S.: Bandlimited optical intensity modulation under average and peak power constraints. IEEE Trans. Commun. 64(9), 3820–3830 (2016). https://doi.org/10.1109/TCOMM.2016.2592519

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by U.S. National Science Foundation (NSF) under grants CNS-1837034, CNS-1745254, CNS-1659965, and CNS-1460897. Any opinions, findings, conclusions, or recommendations expressed in this paper are those of the author(s) and do not necessarily reflect the views of NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Shu, T. (2020). Impact of Multiple Reflections on Secrecy Capacity of Indoor VLC System. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds) Information and Communications Security. ICICS 2019. Lecture Notes in Computer Science(), vol 11999. Springer, Cham. https://doi.org/10.1007/978-3-030-41579-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41579-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41578-5

  • Online ISBN: 978-3-030-41579-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics