Skip to main content

Practical Evaluation Methodology of Higher-Order Maskings at Different Operating Frequencies

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11999))

Included in the following conference series:

  • 2534 Accesses

Abstract

FPGA is widely used in the cryptographic devices, such as security co-processor and crypto engine, due to its high speed and customizability. Side-channel analysis is the state-of-the-art method which could recover the secret information in the FPGA through measuring and analysing the power consumption or the electromagnetic radiation. Therefore, side-channel analysis may lead to a potential threat of the security of FPGA. We find that an excessively high operating frequency could cause a pretty serious security vulnerability in the FPGA implementation of a cryptographic algorithm with side-channel countermeasures. And then, how to evaluate the security of the implementation at different operating frequencies is an important question in the practical application. After investigating the physical reason of the information leakage of the FPGA, we propose a generic evaluation methodology derived from CPA and MIA that can be utilized to analyze the security of FPGA implementation of a cryptographic algorithm with side-channel countermeasures at different operating frequencies. By this methodology, the evaluator only needs to collect the measurements when the FPGA operates at an arbitrary frequency rather than collecting the measurement of all possible frequencies exhaustively. Finally, several experiments in an FPGA with AES cryptographic algorithm protected with a masking countermeasure are conducted to illustrate the feasibility of this methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AIST: Side-channel attack standard evaluation board (SASEBO). http://www.risec.aist.go.jp/project/sasebo/

  2. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_26

    Chapter  Google Scholar 

  3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_17

    Chapter  Google Scholar 

  5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  7. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_25

    Chapter  Google Scholar 

  8. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_10

    Chapter  MATH  Google Scholar 

  9. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N., Mairy, J.-B., Deville, Y.: Efficient selection of time samples for higher-order DPA with projection pursuits. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 34–50. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_3

    Chapter  Google Scholar 

  10. Fu, S., et al.: Multi-byte power analysis: a generic approach based on linear regression. IEEE Access 6, 67511–67518 (2018)

    Article  Google Scholar 

  11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27

    Chapter  Google Scholar 

  12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  13. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, vol. 31. Springer, New York (2008)

    MATH  Google Scholar 

  14. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_24

    Chapter  Google Scholar 

  15. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_12

    Chapter  Google Scholar 

  16. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak information? An a priori statistical power analysis of leakage detection tests. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_25

    Chapter  Google Scholar 

  17. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivariate to univariate. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_1

    Chapter  Google Scholar 

  18. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1173–1178. EDA Consortium (2012)

    Google Scholar 

  19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_38

    Chapter  MATH  Google Scholar 

  20. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_28

    Chapter  Google Scholar 

  21. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

    Article  MathSciNet  Google Scholar 

  22. Regazzoni, F., Wang, Y., Standaert, F.X., et al.: FPGA implementations of the AES masked against power analysis attacks. In: Proceedings of COSADE, vol. 2011, pp. 56–66 (2011)

    Google Scholar 

  23. Tang, M., Guo, Z., Heuser, A., Ren, Y., Li, J., Danger, J.L.: PFDA flexible higher-order masking scheme. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(8), 1327–1339 (2017)

    Article  Google Scholar 

  24. Tang, M., et al.: A generic TC-based method to find the weakness in different phases of masking schemes. Tsinghua Sci. Technol. 23(5), 574–585 (2018)

    Article  Google Scholar 

  25. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Tang, M., Wang, P., Li, Y., Fu, S. (2020). Practical Evaluation Methodology of Higher-Order Maskings at Different Operating Frequencies. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds) Information and Communications Security. ICICS 2019. Lecture Notes in Computer Science(), vol 11999. Springer, Cham. https://doi.org/10.1007/978-3-030-41579-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41579-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41578-5

  • Online ISBN: 978-3-030-41579-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics