Skip to main content

Heavy Metal–Induced Gene Expression in Plants

  • Chapter
  • First Online:
Contaminants in Agriculture

Abstract

The high content of heavy metals (e.g., Cd, Zn, Cu, Co, Cr, Ni, Hg, and Pb) in the soil has harmful effects on plant development and growth and crop yield. The remediation of these pollutants from the environment especially from the contaminated soil and water is an important task for environmentalists and agricultural scientists in order to make our precious soil and water resources clean and reusable for our agricultural industry and for safe human consumption. It is important to develop new and less expensive technologies to remediate contaminated areas and eliminate the potentially deleterious effects of these contaminants which may pose serious problems to our food quality and health if not addressed properly. Phytoremediation, an in situ remediation technique, could be one of the best approaches through which toxic metals can be extracted from the polluted soils and waters. However, it is a relatively new technology, and there are not much data available in order to understand the molecular mechanism of uptake, transport, and accumulation of the toxic metals/metalloids in the harvestable parts of the plants. Recent research has shown great advances in the understanding of key mechanisms responsible for heavy metal detoxification, transport from root to shoot and accumulation in the shoots and leaves of the plants. For example, genes of metal transporters, metal ATPases, micro RNAs involved in translocation, and accumulation process have been identified and their role in metal accumulation is being elucidated to some extent. The aim of this review is to provide a close understanding of the molecular mechanisms of heavy metal-induced plant stress response and tolerance based on the current findings related to molecular biology and biotechnology research. Additionally, recent work on metal stress–related microRNAs and genome editing will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agorio A et al (2017) Phosphatidylinositol 3-phosphate–binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis. PNAS 114:E3354–E3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (2012) The plant family Brassicaceae: contribution towards phytoremediation, vol 21. Springer, Dordrecht

    Book  Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896

    Article  Google Scholar 

  • Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P 1B-type ATPases. J Membr Biol 195:93–108

    Article  PubMed  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babst-Kostecka AA, Waldmann P, Frérot H, Vollenweider P (2016) Plant adaptation to metal polluted environments—physiological, morphological, and evolutionary insights from Biscutella laevigata. Environ Exp Bot 127:1–13

    Article  CAS  Google Scholar 

  • Bairoch A (1993) The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 21:3097

    Google Scholar 

  • Baker AJM, McGrawth SP, Reeves RD, Smith JAC (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resources for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soil and water (Terry, N, Banuelos, G, eds) CRC press, Lewis Publishers, USA. ISBN-13:978-1566704502, pp. 85–107.

    Google Scholar 

  • Baker A, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941. https://doi.org/10.1038/nbt.3659

    Article  CAS  PubMed  Google Scholar 

  • Basic N, Salamin N, Keller C, Galland N, Besnard G (2006) Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochem Syst Ecol 34:667–677

    Article  CAS  Google Scholar 

  • Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Bernal M et al (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bhati KK et al (2015) Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat. Front Plant Sci 6:488. https://doi.org/10.3389/fpls.2015.00488

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutigny S et al (2014) HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. J Exp Bot 65:1529–1540. https://doi.org/10.1093/jxb/eru020

    Article  CAS  PubMed  Google Scholar 

  • Boyd J, Banzhaf S (2007) What are ecosystem services? The need for standardized environmental accounting units. Ecol Econ 63:616–626

    Article  Google Scholar 

  • Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakir B, Kiliçkaya O, Olcay AC (2013) Genome-wide analysis of Aux/IAA genes in Vitis vinifera: cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses. Acta Physiol Plant 35:365–377

    CAS  Google Scholar 

  • Campbell P, Stokes P, Galloway J (1983) Effects of atmospheric deposition on the geochemical cycling and biological availability of metals. Heavy Metals Environ 2:760–763

    CAS  Google Scholar 

  • Cellier MF (2012) Nramp: from sequence to structure and mechanism of divalent metal import. In: Current topics in membranes, vol 69. Elsevier, pp 249–293

    Google Scholar 

  • Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proc Nat Acad Sci U S A 92:10089–10093

    Article  CAS  Google Scholar 

  • Cevher-Keskin B, Yıldızhan Y, Yüksel B, Dalyan E, Memon AR (2019) Characterization of differentially expressed genes to Cu stress in Brassica nigra by Arabidopsis genome arrays. Environ Sci Pollut Res 26:299–311

    Article  CAS  Google Scholar 

  • Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: status and promise. In: Advances in botanical research, vol 83. Elsevier, pp 189–221

    Google Scholar 

  • Chaney RL, Baker AJ, Morel JL (2018) The long road to developing agromining/phytomining. In: Agromining: farming for metals. Springer, Cham, pp 1–17

    Google Scholar 

  • Chen J-Q, Meng X-P, Zhang Y, Xia M, Wang X-P (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Chu C-C, Lee W-C, Guo W-Y, Pan S-M, Chen L-J, Li H-m, Jinn T-L (2005) A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol 139:425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson DT, Lüttge U (1989) Mineral nutrition: divalent cations, transport and compartmentation. In: Progress in botany. Springer, Berlin, pp 93–112

    Chapter  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Cohen CK, Garvin DF, Kochian LV (2004) Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 218:784–792

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  • Dalyan E et al (2017) The identification of genes associated with Pb and Cd response mechanism in Brassica juncea L. by using Arabidopsis expression array. Environ Exp Bot 139:105–115

    Article  CAS  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. , table of contents. https://doi.org/10.1128/MMBR.00031-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies T, Coleman J (2000) The Arabidopsis thaliana ATP-binding cassette proteins: an emerging superfamily. Plant Cell Environ 23:431–443

    Article  CAS  Google Scholar 

  • De Vos C, Schat H (1991) Free radicals and heavy metal tolerance. In: Ecological responses to environmental stresses. Springer, Dordrecht, pp 22–31

    Chapter  Google Scholar 

  • Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33:475–479

    Article  CAS  PubMed  Google Scholar 

  • Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Nat Acad Sci U S A 93:5624–5628

    Article  CAS  Google Scholar 

  • Fang X et al (2016) Genome-wide characterization of soybean P 1B-ATPases gene family provides functional implications in cadmium responses. BMC Genomics 17:376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franceschini A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. https://doi.org/10.1093/nar/gks1094

    Article  CAS  PubMed  Google Scholar 

  • Galeas ML, Klamper EM, Bennett LE, Freeman JL, Kondratieff BC, Quinn CF, Pilon-Smits EA (2008) Selenium hyperaccumulation reduces plant arthropod loads in the field. New Phytol 177:715–724

    Article  CAS  PubMed  Google Scholar 

  • Gao H et al (2018) NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. New Phytol 217:179–193

    Article  CAS  PubMed  Google Scholar 

  • Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNAs in metal stress: specific roles or secondary responses? Int J Mol Sci 13:15826–15847. https://doi.org/10.3390/ijms131215826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleba D et al (1999) Use of plant roots for phytoremediation and molecular farming. Proc Nat Acad Sci U S A 96:5973–5977

    Article  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Nat Acad Sci U S A 95:7220–7224

    Article  CAS  Google Scholar 

  • Gruenheid S, Cellier M, Vidal S, Gros P (1995) Identification and characterization of a second mouse Nramp gene. Genomics 25:514–525

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta Biomembr 1465:190–198

    Article  CAS  Google Scholar 

  • Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125:164–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall J, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L (1997) Gene families: the taxonomy of protein paralogs and chimeras. Science 278:609–614

    Article  CAS  PubMed  Google Scholar 

  • Huitson SB, Macnair MR (2003) Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails? New Phytol 159:453–459

    Article  CAS  PubMed  Google Scholar 

  • Hussain D et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339. https://doi.org/10.1105/tpc.020487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU et al (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355. https://doi.org/10.1016/j.molp.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  • Isaure M-P et al (2015) Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. J Exp Bot 66:3201–3214

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286. https://doi.org/10.1038/srep00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov R, Bauer P (2017) Sequence and coexpression analysis of iron-regulated ZIP transporter genes reveals crossing points between iron acquisition strategies in green algae and land plants. Plant Soil 418:61–73

    Article  CAS  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011a) Plant ABC transporters vol 9. Arabidopsis Book, 2012/02/04 edn. https://doi.org/10.1199/tab.0153

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011b) Plant ABC transporters. The Arabidopsis Book/Am Soc Plant Biol 9:e0153

    Google Scholar 

  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753. https://doi.org/10.1111/j.1365-313X.2009.03818.x

    Article  CAS  PubMed  Google Scholar 

  • Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Ekkehard Neuhaus H, Trentmann O (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192:393–404

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y et al (2008) Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiol 148:969–980. https://doi.org/10.1104/pp.108.119933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T (2015) Cation diffusion facilitator family: structure and function. FEBS Lett 589:1283–1295

    Article  CAS  PubMed  Google Scholar 

  • Kumar PN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Mahajan M, Yadav SK (2012) Toxic metals accumulation, tolerance and homeostasis in brassicaoilseed species: overview of physiological, biochemical and molecular mechanisms. In: The plant family Brassicaceae. Springer, Dordrecht, pp 171–211

    Chapter  Google Scholar 

  • Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H (2018) The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. J Integr Plant Biol 60:1127–1153. https://doi.org/10.1111/jipb.12734

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–312

    Article  PubMed Central  Google Scholar 

  • Küpper H, Lombi E, Zhao F-J, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Lane TS et al (2016) Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol 16:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanquar V, Ramos MS, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Krämer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasat MM (2000) The use of plants for the removal of toxic metals from contaminated soils. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Google Scholar 

  • Lefèvre F, Baijot A, Boutry M (2015) Plant ABC transporters: time for biochemistry? Biochem Soc Trans 43:931–936

    Article  PubMed  CAS  Google Scholar 

  • Lekeux G et al (2018) di-Cysteine motifs in the C-terminus of plant HMA4 proteins confer nanomolar affinity for zinc and are essential for HMA4 function in vivo. J Exp Bot 69:5547–5560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2013) Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production. Bioprocess Biosyst Eng 36:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Li D et al (2015) Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa. Front Plant Sci 6:1149

    PubMed  PubMed Central  Google Scholar 

  • Lin YF et al (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol:182, 392–404

    Google Scholar 

  • Lin Y-F, Severing EI, te Lintel HB, Schijlen E, Aarts MG (2014) A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens. Front Plant Sci 5:261

    PubMed  PubMed Central  Google Scholar 

  • Lin Y, Gritsenko D, Feng S, Teh YC, Lu X, Xu J (2016) Detection of heavy metal by paper-based microfluidics. Biosens Bioelectron 83:256–266

    Article  CAS  PubMed  Google Scholar 

  • Liu W et al (2015) Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14024. https://doi.org/10.1038/srep14024

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698. https://doi.org/10.1111/nph.14622

    Article  CAS  PubMed  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ 9:210–220

    Article  CAS  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassicaceae. Genome Res 15:516–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Komar K, Tu C, Zhang W, Cai Y, Kennelley E (2001) Addendum: a fern that hyperaccumulates arsenic. Nature 411:438

    Article  CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic, Boston

    Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384

    Article  PubMed  Google Scholar 

  • Mäser P et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  • McGrath S, Zhao J, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • Memon AR (2016) Metal hyperaccumulators: mechanisms of hyperaccumulation and metal tolerance. In: Phytoremediation. Springer, Berlin, pp 239–268

    Chapter  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. J Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Memon AR, Yatazawa M (1982) Chemical nature of manganese in the leaves of manganese accumulator plants. J Soil Sci Plant Nutr 28:401–412

    Article  CAS  Google Scholar 

  • Memon AR, Yatazawa M (1984) Nature of manganese complexes in manganese accumulator plant-Acanthopanax sciadophylloides. J Plant Nutr 7:961–974

    Article  CAS  Google Scholar 

  • Memon AR, Zahirovic E (2014) Genomics and transcriptomics analysis of Cu accumulator plant Brassica nigra L. J Appl Biol Sci 8:1–8

    Google Scholar 

  • Memon AR, Itô S, Yatazawa M (1979) Absorption and accumulation of iron, manganese and copper in plants in the temperate forest of Central Japan J. Soil Sci Plant Nutr 25:611–620

    Article  CAS  Google Scholar 

  • Memon AR, Aktoprakligil D, Özdemir A, Verti A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Memon AR, Yildizhan Y, Kaplan E (2008) Metal accumulation in crops–human health issues. In: Trace elements as contaminants nutrients—consequences in ecosystems human health. Wiley, Hoboken, pp 81–98

    Chapter  Google Scholar 

  • Meng JG, Zhang XD, Tan SK, Zhao KX, Yang ZM (2017) Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus. Biometals 30:917–931. https://doi.org/10.1007/s10534-017-0057-3

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, de la Torre VSG, Hanikenne M (2018) Physiology and molecular biology of trace element hyperaccumulation. In: Agromining: farming for metals. Springer, Cham, pp 93–116

    Chapter  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904. https://doi.org/10.1104/pp.108.130294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno I et al (2008) AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. J Biol Chem 283:9633–9641

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. BBA – Mol Cell Res 1763:609–620

    CAS  Google Scholar 

  • Noret N, Meerts P, Vanhaelen M, Dos Santos A, Escarré J (2007) Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152:92–100

    Article  PubMed  Google Scholar 

  • Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T (2011) Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci Biotechnol Biochem 75:1211–1213

    Article  CAS  PubMed  Google Scholar 

  • Østerberg JT, Palmgren M (2018) Heavy metal pumps in plants: structure, function and origin. In: Advances in botanical research. Elsevier, pp 57–89

    Google Scholar 

  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  PubMed  CAS  Google Scholar 

  • Ozturk M, Memon AR, Gucel S, Sakcali MS (2012) Brassicas in Turkey and their potential role for degraded habitats’ remediation. In: The plant family Brassicaceae. Springer, Dordrecht, pp 265–287

    Chapter  Google Scholar 

  • Padmavathiamma PK, Li L (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pang K, Li Y, Liu M, Meng Z, Yu Y (2013) Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L). Gene 526:411–428. https://doi.org/10.1016/j.gene.2013.05.051

    Article  CAS  PubMed  Google Scholar 

  • Park J et al (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288. https://doi.org/10.1111/j.1365-313X.2011.04789.x

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS (2017) Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 7:44929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V (2018) Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in Durum Wheat. Int J Mol Sci 19:787

    Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiology 148:455–466

    Google Scholar 

  • Peñarrubia L, Andrés-Colás N, Moreno J, Puig S (2010) Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? J Biol Inorg Chem 15:29

    Article  PubMed  CAS  Google Scholar 

  • Pence NS et al (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Nat Acad Sci 97:4956–4960

    Google Scholar 

  • Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L (2013) Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling. Plant Physiol 162:180–194

    Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep 6:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  PubMed  CAS  Google Scholar 

  • Qin L et al (2017) Genome-wide identification and expression analysis of NRAMP family genes in soybean (Glycine Max L). Front Plant Sci 8:1436. https://doi.org/10.3389/fpls.2017.01436

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment (Raskin I, Finsley BD eds), Wiley, New York, 193–229.

    Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

    Article  CAS  Google Scholar 

  • Reeves R, Baker A, Jaffré T, Erskine P, Echevarria G, van der Ent A (2017) A global database for hyperaccumulator plants of metal and metalloid trace elements. New Phytol:14907

    Google Scholar 

  • Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  PubMed  Google Scholar 

  • Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricachenevsky FK, Sperotto RA (2016) Into the wild: Oryza species as sources for enhanced nutrient accumulation and metal tolerance in rice. Front Plant Sci 7:974

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144

    PubMed  PubMed Central  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Nat Acad Sci 97:12356–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig AC, Argüello JM (2012) Toward a molecular understanding of metal transport by P1B-Type ATPases. In: Current topics in membranes, vol 69. Elsevier, pp 113–136

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technol 13:468

    CAS  Google Scholar 

  • Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587

    Article  PubMed  Google Scholar 

  • Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    Article  PubMed  CAS  Google Scholar 

  • Sarma RK, Gowtham I, Bharadwaj R, Hema J, Sathishkumar R (2018) Recent advances in metal induced stress tolerance in plants: possibilities and challenges. In: Plants under metal and metalloid stress. Springer, Singapore, pp 1–28

    Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021. https://doi.org/10.1093/jxb/eru340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytol 216:682–698

    Article  CAS  PubMed  Google Scholar 

  • Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592:1954–1967. https://doi.org/10.1002/1873-3468.13073

    Article  CAS  PubMed  Google Scholar 

  • Seigneurin-Berny D et al (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein RJ et al (2017) Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol 213:1274–1286

    Article  CAS  PubMed  Google Scholar 

  • Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90

    Article  CAS  Google Scholar 

  • Stephens BW, Cook DR, Grusak MA (2011) Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula. BioMetals 24:51–58

    Article  CAS  PubMed  Google Scholar 

  • Szczygłowska M, Bodnar M, Namieśnik J, Konieczka P (2014) The use of vegetables in the biomonitoring of cadmium and lead pollution in the environment. Crit Rev Anal Chem 44:2–15

    Article  PubMed  CAS  Google Scholar 

  • Tang X et al (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants 3:17018

    Article  CAS  PubMed  Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  • Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist 207:1097–1109

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • van der Ent A, Echevarria G, Baker AJ, Morel JL (2018) Preface. In: Agromining: farming for metals extracting unconventional resources using plants. Springer, Cham, pp V–VI

    Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hanikenne M, Clemens S (2013) A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. Front Plant Sci 4:388

    Article  PubMed  PubMed Central  Google Scholar 

  • Verrier PJ et al (2008) Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  CAS  PubMed  Google Scholar 

  • von Wirén N et al (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Wang Z et al (2016) MoTe 2: a type-II Weyl topological metal. Physical Rev Lett 117:056805

    Article  CAS  Google Scholar 

  • Wang J, Liang S, Xiang W, Dai H, Duan Y, Kang F, Chai T (2019) A repeat region from the Brassica juncea HMA4 gene BjHMA4R is specifically involved in Cd2+ binding in the cytosol under low heavy metal concentrations. BMC Plant Biol 19:89. https://doi.org/10.1186/s12870-019-1674-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  PubMed  Google Scholar 

  • Weast RC, Astle MJ, Beyer WH (1988) CRC handbook of chemistry and physics vol 69. CRC Press, Boca Raton

    Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  CAS  PubMed  Google Scholar 

  • Wintz H et al (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Google Scholar 

  • Wolter F, Puchta H (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J 94:767–775. https://doi.org/10.1111/tpj.13899

    Article  CAS  PubMed  Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181:71–78. https://doi.org/10.1111/j.1469-8137.2008.02638.x

    Article  CAS  Google Scholar 

  • Xu X, Shi J, Chen X, Chen Y, Hu T (2009) Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318:197

    Google Scholar 

  • Xu Y et al (2014) Os ABCB 14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J 79:106–117

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Duan W, Lyu S, Li Y, Hou X (2017) Genome-wide identification, evolution, and expression analysis of the ATP-binding cassette transporter gene family in Brassica rapa. Front Plant Sci 8:349

    PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Li X, Xiao J, Wang S (2011) Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol 11:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Wang L, Zhao FJ, Wu L, Liu A, Xu W (2018) SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. Plant Cell Environ 42:1112–1124

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Chen L, Li X (2018) Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Bot Stud 59:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613. https://doi.org/10.1093/jxb/ers136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C et al (2017) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci 22:38–52. https://doi.org/10.1016/j.tplants.2016.08.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Ms. Fatma Kusur, Department of Molecular Biology and Genetics, Usak University, and Mr. Muhammet Memon, International Biomedical and Genomic Research Center, Dokuz Eylul University, for their help in reference arrangement and their valuable comments on some part of this review. This work is supported by BAP project F010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Razaque Memon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Memon, A.R. (2020). Heavy Metal–Induced Gene Expression in Plants. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-41552-5_7

Download citation

Publish with us

Policies and ethics