Skip to main content

Effect of Heavy Metals on Plant Growth: An Overview

  • Chapter
  • First Online:
Contaminants in Agriculture

Abstract

Most of the agricultural soils around the world are contaminated with heavy metals like cadmium, arsenic, mercury, lead, chromium, and many more. High concentration of heavy metals is toxic to all life forms, from microorganisms to human beings. This chapter would focus on the impacts of heavy metals on plants. High concentration of bioavailable forms of heavy metals causes production of free radicals and reactive oxygen species in plant cells. This is followed by uncontrolled oxidation and initiation of chain reaction with cellular biomolecules like nucleic acids, proteins, and lipids, ultimately causing oxidative stress and cellular damage. Therefore, sensitive plants growing in sites with heavy metals exposure show altered metabolism, growth reduction, and reduced biomass production and reduced yield. To avoid the effects of heavy metal toxicity, tolerant plants have developed numerous mechanisms that get activated on heavy metal exposure. Two broad strategies for heavy metal tolerance include sequestration/accumulation of toxic heavy metals in a cellular compartment like vacuole or apoplast, and detoxification, that is, conversion into nontoxic forms. This chapter summarizes the origin, role, and impact of heavy metals on plants, followed by plant defense mechanisms to counteract heavy metal stress, and finally, remediation techniques for removal of heavy metal contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuriaflava CR1, based on microbially induced calcite precipitation. Ecol Eng 37(10):1601–1605

    Article  Google Scholar 

  • Achal V, Pan X, Zhang D (2012a) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89(6):764–768

    Article  CAS  PubMed  Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012b) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Article  PubMed  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Al Khateeb W, Al-Qwasemeh H (2014) Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of Solanum nigrum L., a crop wild relative for tomato; comparative study. Physiol Mol Biol Plants 20:31–39

    Article  CAS  PubMed  Google Scholar 

  • Alcántara E, Romera FJ, Cañete M, De la Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe (lll) reductase in Fe-deficient cucumber (Cucumissativus L.) plants. J Exp Bot 45(12):1893–1898

    Article  Google Scholar 

  • Angino EE, Magnuson LM, Waugh TC, Galle OK, Bredfeldt J (1970) Arsenic in detergents-possible danger and pollution hazard. Science 168:389–392

    Article  CAS  PubMed  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  CAS  PubMed  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinasterAit. seedlings. Tree Physiol 15:411–415

    Article  CAS  PubMed  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Nat Sci 5:16–20

    CAS  Google Scholar 

  • Banuelos G, Terry N, LeDuc DL, Pilon SEA, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39(6):1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao SA, Sharma AS, Poojari AC (2015) Toxicity of nickel in plants. Int J Pure and Appl Biosci 3(2):345–355

    Google Scholar 

  • Bhattacharyya R, Chatterjee D, Nath B, Jana J, Jacks G, Vahter M (2003) High arsenic groundwater: mobilization, metabolism and mitigation − an overview in the Bengal Delta Plain. Mol Cell Biochem 253:347–355

    Article  CAS  PubMed  Google Scholar 

  • Bian M, Zho M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J 1(2):91–104

    Article  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  PubMed  Google Scholar 

  • Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546

    Article  CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ 17(2):153–162

    Article  CAS  Google Scholar 

  • Burzynski M (1987) The uptake and transpiration of water and the accumulation of lead by plants growing on lead chloride solutions. Acta Soc Bot Pol 56:271–280

    Article  CAS  Google Scholar 

  • Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4(6):873–880

    Google Scholar 

  • Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in French marigold. J Plant Nutr 19:901–916

    Article  CAS  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Sar P (2011) Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 186(1):336–343

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford TW, Stroehlein JL, Kuehl RO (1989) Manganese and rates of growth and mineral accumulation in cucumber. J Am Soc Hort Sci 114:300–306

    CAS  Google Scholar 

  • Crooke WM (1956) Effect of soil reaction on uptake of nickel from a serpentine soil. Soil Sci 81(4):269–276

    Google Scholar 

  • Dalvi A, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2:362–368

    Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11(8):664–691

    Article  CAS  PubMed  Google Scholar 

  • Davies KL, Davies MS, Francis D (1991) Zinc-induced vacuolation in root meristematic cells of Festuca rubra L. Plant Cell Environ 14:399–406

    Article  CAS  Google Scholar 

  • De Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an inter specific rice. J Plant Nutr 28:1–20

    Article  CAS  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+on ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1–2):220–225

    Article  CAS  PubMed  Google Scholar 

  • Drazkiewicz M (1994) Chlorophyll occurrence, functions, mechanism of action, effects of internal and external factors. Photosynthetica 30:321–331

    CAS  Google Scholar 

  • Dudhane M, Borde M, Jite PK (2012) Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb. inoculated with AM fungi. Int J Phytoremediation 14(7):643–655

    Article  CAS  PubMed  Google Scholar 

  • Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2012) Biosorption of Pb (II) by nonliving lichen biomass of Cladoniarangi formis Hoffm. Int J Environ Res 6(2):417–424

    CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120. https://doi.org/10.1155/2015/756120

    Article  CAS  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    Article  CAS  Google Scholar 

  • Eshleman A, Siegel SM, Siegel BZ (1971) Is mercury from Hawaiian volcanoes a natural source of pollution? Nature 223:471–475

    Article  Google Scholar 

  • Eun SO, Youn HS, Lee Y (2002) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365

    Article  Google Scholar 

  • Farshian S, Khara J, Malekzadeh P (2007) Influence of arbuscular mycorrhizal fungus (Glomus etunicatum) with lettuce plants under zinc toxicity in nutrient solution. Pak J Biol Sci 10:2363–2367

    Article  CAS  PubMed  Google Scholar 

  • Fidalgo F, Azenha M, Silva AF, de Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Energy Secur 2(1):70–80

    Article  Google Scholar 

  • Fodor E, Szabo NA, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    Article  CAS  Google Scholar 

  • Gadd G (2009) Heavy metal pollutants: environmental and biotechnological aspects. In: Encyclopedia of microbiology Elsevier, pp 321–324

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):201

    Article  PubMed  CAS  Google Scholar 

  • Gopal R, Dube BK, Sinha P, Chatterjee C (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plant Anal 34:619–628

    Article  CAS  Google Scholar 

  • Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28

    CAS  Google Scholar 

  • Guan Q, Wang F, Xu C, Pan N, Lin J, Zhao R, Luo H (2018) Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China. Chemosphere 193:189–197

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199:309–313

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Hawkes JS (1997) Heavy metals. J Chem Educ 74:1369–1374

    Article  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyoma H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  PubMed  Google Scholar 

  • Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Environmental protection strategies for sustainable development. Springer, Dordrecht, pp 35–64

    Chapter  Google Scholar 

  • Huang Y, Tao S, Chen YJ (2005) The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci 17:276–280

    CAS  Google Scholar 

  • Huttermann A, Arduini I, Godbold DL (1999) Metal pollution and forest decline. In: Prasad NMV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer-Verlag, Berlin, pp 253–272

    Chapter  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummonii. Chemosphere 65:591–598

    Article  CAS  PubMed  Google Scholar 

  • Ivanov VB, Bystrova EI, Seregin IV (2003) Comparative impacts of heavy metals on root growth as related to their specificity and selectivity. Russian J Plant Physiol 50(3):398–406

    Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AS, Shende GB (1986) Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Ind J Environ Health 28:235–243

    CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1–2):197–207

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Lamar RT, Glaser JA (1992) The potential of white-rot fungi in bioremediation. In Biotechnology and Environmental Science. Springer, Boston MA, pp 131–138

    Google Scholar 

  • Kohler A, Blaudez D, Chalot M, Martin F (2004) Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol 164:83–93

    Article  CAS  PubMed  Google Scholar 

  • Krämer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl Instrum Methods Phys Res, Sect B 130(1–4):346–350

    Article  Google Scholar 

  • Kumar JN, Soni H, Kumar RN, Bhatt I (2008) Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turkish J of Fisheries and Aquatic Sci 8(2):193–200

    Google Scholar 

  • Kumar R, Acharya C, Joshi SR (2011) Isolation and analyses of uranium tolerant Serratiamarcescens strains and their utilization for aerobic uranium U (VI) bioadsorption. J Microb 49(4):568

    Article  CAS  Google Scholar 

  • Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollut 97:209–221

    CAS  Google Scholar 

  • Lavres J, Malavolta E, Nogueira NL, Moraes MF, Rodrigues A, Lanzoni M, Pereira C (2009) Changes in anatomy and root cell ultrastructure of soybean genotypes under manganese stress. Rev Bras Cienc Solo 33:395–403

    Article  CAS  Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102(9):5297–5304

    Article  CAS  PubMed  Google Scholar 

  • Lemos Batista B, Nigar M, Mestrot A, Alves Rocha B, Barbosa Júnior F, Price AH, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65(6):1467–1479

    Article  PubMed Central  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  PubMed  Google Scholar 

  • Lidon FC, Teixeira MG (2000) Rice tolerance to excess Mn implications in the chloroplast lamellae and synthesis of a novel Mn protein. Plant Physiol Biochem 38:969–978

    Article  CAS  Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99(7):2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Lin ZF, Lin GZ, Song LY, Chen SW, Mo H (2010) Lead and cadmium induced alterations of cellular functions in leaves of Alocasia macrorrhiza L. Schott. Ecotoxicol Environ Saf 73:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Lo TY, Chen SM (1994) The effect of chemical treatment on the carotene and ascorbic acid contents of tomato. J Chin Chem Soc 11:95–98

    Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552

    Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5(2):254–262

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409(6820):579

    Article  CAS  PubMed  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Plants and heavy metals. Springer, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C, Balak S (2012) Cadmium and lead bioaccumulation during growth stages alters sugar and vitamin C content in dietary vegetables. Proc Natl Acad Sci India Sect B Biol Sci 82(4):477–488

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Toronto

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy-metal-resistant and non-resistant populations of Silenecucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33(2):161–165

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus. Heredity 69:336–341

    Article  CAS  Google Scholar 

  • Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Lewis JB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res B 75:257–263

    Article  CAS  Google Scholar 

  • Mirshekali H, Hadi H, Amirnia R, Khodaverdiloo H (2012) Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). Int J Agric Res Rev 2:247–254

    Google Scholar 

  • Mishra D, Kar M, Pradhan PK (1973) Chemical regulation of acid inorganic pyrophosphates activity during senescence of detached leaves. Exp Gerantol 8:165–167

    Google Scholar 

  • Mishra S (2019) Targeted genome editing tools in plants. In: Innovations in life science research. NOVA Science Publisher, New York. ISBN: 978-1-53615-868-7

    Google Scholar 

  • Misra SG, Mani D (1991) Soil pollution. Ashish Publishing House, New Delhi

    Google Scholar 

  • Mitchell RL, Burchett MD, Pulkownik A, McCluskey L (1988) Effects of environmentally hazardous chemicals on the emergence and early growth of selected Australian native plants. Plant Soil 112:195–199

    Article  CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16(8):17975–17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA- and citric acidenhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediation 11:558–574

    Article  CAS  PubMed  Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonproteinthiols in ten Arabidopsis ecotypes (correlation with copper tolerance). Plant Physiol 109(3):945–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 8:199–216

    Article  CAS  Google Scholar 

  • Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Nat Environ Pollut Technol 1:285–290

    CAS  Google Scholar 

  • Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194(3):360–367

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157–161

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G (1994) Change in chlorophyll fluorescence as a result of copper treatment: dose response relations in Silene and Thlaspi. Photosynthetica 29:455–462

    Google Scholar 

  • Pagani MA, Tomas M, Carrillo J (2012) The response of the different soybean metallothionein isoforms to cadmium intoxication. J Inorg Biochem 117:306–315

    Article  CAS  PubMed  Google Scholar 

  • Parmar NG, Vithalani SD, Chanda SV (2002) Alteration in growth and peroxidase activity by heavy metals in Phaseolus seedlings. Acta Physiol Plant 24(1):89–95

    Article  CAS  Google Scholar 

  • Patterson WA, Olson JJ (1983) Effects of heavy metals on radicle growth of selected woody species germinated on filter paper, mineral and organic soil substrates. Can J For Res 13(2):233–238

    Article  CAS  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Pletsch M, de Araujo BS, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17(8):679–687

    Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad 70:91–98

    Google Scholar 

  • Ramasamy P, Vino AB, Saravanan R, Subhapradha N, Shanmugam V, Shanmugam A (2011) Screening of antimicrobial potential of polysaccharide from cuttlebone and methanolic extract from body tissue of Sepia prashadi Winkworth, 1936. Asian Pac J Trop Biomed 1(2):244–248

    Article  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31(1):19–48

    Article  CAS  PubMed  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Ros ROC, Cooke DT, Burden RS, James CS (1990) Effects of the herbicide MCPA and the heavy metals, cadmium and nickel on the lipid composition, Mg2+-ATPase activity and fluidity of plasma membranes from rice, Oryza sativa (cv. Bahia) shoots. J Exp Bot 41:457–462

    Article  CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9(5):609–617

    Google Scholar 

  • Samardakiewicz S, Wozny A (2005) Cell division in Lemna minor roots treated with lead. Aquat Bot 83:289–295

    Article  CAS  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130(4):1815–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders RJ, Paul NA, Hu Y, de Nys R (2012) Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. PLoS One 7(5):e36470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena PK, Krishna Raj S, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of heavy metal contaminated and polluted soils. In: Heavy metal stress in plants. Springer, Berlin, pp 305–329

    Chapter  Google Scholar 

  • Say R, Yilmaz N, Denizli A (2003) Removal of chromium (VI) ions from synthetic solutions by the fungus Penicillium canescens. Eur J Miner Process Environ Prot 3(1):36–41

    Google Scholar 

  • Seaward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In: Shaw AJ (ed) Heavy metal tolerance in plants evolutionary aspects. CRC Press, Boca Raton, pp 75–94

    Google Scholar 

  • Sedeek KE, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114. https://doi.org/10.3389/fpls

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvam A, Wong JWC (2008) Phytochelatin systhesis and cadmium uptake of Brassica napus. Environ Technol 29(7):765–773

    Article  CAS  PubMed  Google Scholar 

  • Sengar RS, Gupta S, Gautam M, Sharma A, Sengar K (2008) Occurrence, uptake, accumulation and physiological responses of nickel in plants and its effects on environment. Res J Phytochem 2(2):44–60

    Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma A, Talukdar G (1987) Effects of metals on chromosomes of higher organisms. Environ Mutagen 9:191–226

    Article  CAS  PubMed  Google Scholar 

  • Shen H, He Z, Yan H, Xing Z, Chen Y, Xu W, Wenzhong X, Ma M (2014) The fronds tonoplast quantitative proteomic analysis in arsenic hyperaccumulator Pteris vittata L. J Proteome 105:46–57

    Article  CAS  Google Scholar 

  • Silva S (2012) Aluminium toxicity targets in plants. J Bot 2012:219462

    Google Scholar 

  • Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  PubMed  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singhal R, Joshi S, Tirumalesh K, Gurg R (2004) Reduction of uranium concentration in well water by Chlorella (Chlorella pyrendoidosa) a fresh water algae immobilized in calcium alginate. J Radioanal Nucl Chem 261(1):73–78

    Article  CAS  Google Scholar 

  • Stefanov K, Seizova K, Popova I, Petkov VL, Kimenov G, Popov S (1995) Effects of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. J Plant Physiol 147:243–246

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161: 1–31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99(5):1305–1310

    Article  CAS  PubMed  Google Scholar 

  • Turnau K (1998) Heavy metal content and localization in mycorrhizal Euphorbia cyparissias zinc wastes in Southern Poland. Acta Soc Bot Pol 67:105–113

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl chem 73(7):1163–1172

    Google Scholar 

  • Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as bio monitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424

    Google Scholar 

  • Veselý T, Tlustos P, Száková J (2012) Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Int J Phytoremediation 14(4):335–349

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:1–12

    Article  CAS  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramírez SA, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99(13):5574–5581

    Article  CAS  PubMed  Google Scholar 

  • Wainwright SJ, Woolhouse HW (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth.: cell elongation and membrane damage. J Exp Bot 28:1029–1036

    Article  CAS  Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, SkÅ‚odowska A, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157(10):2781–2789

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Tang S, Zhang X, Guo J, Song Z, Tian S, Smith DL (2009) Using elevated CO2 to increase the biomass of a Sorghum vulgare× Sorghum vulgare var. sudanense hybrid and Trifoliumpratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170(2–3):861–870

    Article  CAS  PubMed  Google Scholar 

  • Xiong ZT, Zhao F, Li MJ (2006) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environl Toxicol: An Int J 21(2):147–153

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schratz C (2005) Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762

    Article  PubMed  CAS  Google Scholar 

  • Zarei GH, Shamsi HO, Dehghani SM (2010) The effect of drought stress on yield, yield components and seed oil content of three autumnal rapeseed cultivars (Brassica napus L.). J Res Agric Sci 6(1):29–37

    Google Scholar 

  • Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Alva AK (1993) Distribution of trace metals in some sandy soils under citrus production. Soil Sci Soc Am J 57:350–355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Director, DEI, for his continuous support and encouragement. SM is grateful to Dayalbagh Educational Institute, Deemed University, Agra, for sanctioning the Research Project, DEI/Minor Project/2017-18 (iv), as a startup grant. DG is thankful to DST-INSPIRE for providing fellowship.

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, D. et al. (2020). Effect of Heavy Metals on Plant Growth: An Overview. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-41552-5_4

Download citation

Publish with us

Policies and ethics