Advertisement

Conclusion and Future Work

Chapter
  • 227 Downloads

Abstract

This book developed and presented a new methodology that allows including a MC simulations-based circuit yield estimation in an analog IC sizing and optimization loop. The new developed methodology was added as a new feature to the state-of-the-art AIDA-C sizing and optimization tool and has been proved by the test cases presented. This chapter presents the conclusion of this work, and future research directions for continuing the development of new features for the AIDA framework.

Keywords

Analog IC design Yield-aware circuit sizing optimization Electronic design automation 

References

  1. 1.
    N. Lourenço, R. Martins, N. Horta, Automatic Analog IC Sizing and Optimization Constrained with PVT Corners and Layout Effects (Springer International Publishing, Cham, 2017)CrossRefGoogle Scholar
  2. 2.
    A. Singhee, R.A. Rutenbar, Why quasi-Monte Carlo is better than Monte Carlo or Latin hypercube sampling for statistical circuit analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1763–1776 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Liu, F.V. Fernandez, G.G.E. Gielen, Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(6), 793–805 (2011)CrossRefGoogle Scholar
  4. 4.
    I. Guerra-Gomez, E. Tlelo-Cuautle, L.G. de la Fraga, OCBA in the yield optimization of analog integrated circuits by evolutionary algorithms, in 2015 IEEE Int. Symp. Circuits Syst. (ISCAS), Lisbon, 2015Google Scholar
  5. 5.
    E. Afacan, G. Berkol, A.E. Pusane, G. Dündar, F. Başkaya, Adaptive sized Quasi-Monte Carlo based yield aware analog circuit optimization tool, in 2014 5th Eur. Workshop on CMOS Variability (VARI), Palma de Mallorca, 2014Google Scholar
  6. 6.
    E. Afacan, G. Berkol, A.E. Pusane, G. Dündar, F. Başkaya, A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool, in 2015 Des. Automat. Test Eur. Conf. Exhibition (DATE), Grenoble, 2015Google Scholar
  7. 7.
    E. Afacan, G. Berkol, G. Dundar, A.E. Pusane, F. Baskaya, An analog circuit synthesis tool based on efficient and reliable yield estimation. Microelectron. J. 54, 14–22 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Pak, F.V. Fernandez, G. Dundar, Comparison of QMC-based yield-aware pareto front techniques for multi-objective robust analog synthesis. Integration VLSI J. 55, 357–365 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Qazi, M. Tikekar, L. Dolecek, D. Shah, A. Chandrakasan, Loop flattening & spherical sampling: highly efficient model reduction techniques for SRAM yield analysis, in 2010 Des. Autom. Test Eur. Conf. Exhibition (DATE), Dresden, 2010Google Scholar
  10. 10.
    E. Yilmaz, S. Ozev, Adaptive-learning-based importance sampling for analog circuit DPPM estimation. IEEE Des. Test 32(1), 36–43 (2015)Google Scholar
  11. 11.
    R. Kanj, R. Joshi and S. Nassif, Mixture importance sampling and its application to the analysis of SRAM designs in the presence of rare failure events, in 2006 43rd ACM/IEEE Design Automat. Conf., San Francisco, CA, 2006Google Scholar
  12. 12.
    T. McConaghy, K. Breen, J. Dyck, A. Gupta, Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide (Springer, New York, 2013)CrossRefGoogle Scholar
  13. 13.
    J. Yao, Z. Ye, Y. Wang, Importance boundary sampling for SRAM yield analysis with multiple failure regions. IEEE Trans. Comput. Aided Des. Integr. Syst. 33(3), 384–396 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Wang, C. Yan, X. Li, D. Zhou, X. Zeng, High-dimensional and multiple-failure-region importance sampling for SRAM yield analysis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(3), 806–819 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Sun, X. Li, H. Liu, K. Luo, B. Gu, Fast statistical analysis of rare circuit failure events via scaled-sigma sampling for high-dimensional variation space. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(7), 1096–1109 (2015)CrossRefGoogle Scholar
  16. 16.
    C.C. Kuo, W.Y. Hu, Y.H. Chen, J.F. Kuan, Y.K. Cheng, Efficient trimmed-sample Monte Carlo methodology and yield-aware design flow for analog circuits, in DAC Des. Autom. Conf., San Francisco, CA, 2012Google Scholar
  17. 17.
    O. Okobiah, S.P. Mohanty, E. Kougianos, Fast statistical process variation analysis using universal Kriging metamodeling: a PLL example, in 2013 IEEE 56th Int. Midwest Symp. Circuits Syst. (MWSCAS), Columbus, OH, 2013Google Scholar
  18. 18.
    E. Felt, S. Zanella, C. Guardiani, A. Sangiovanni-Vincentelli, Hierarchical statistical characterization of mixed-signal circuits using, in Proc. Int. Conf. Comput. Aided Des., San Jose, CA, 1996Google Scholar
  19. 19.
    X. Li, W. Zhang, F. Wang, Large-scale statistical performance modeling of analog and mixed-signal circuits, in Proc. IEEE 2012 Custom Integr. Circuits Conf., San Jose, CA, 2012Google Scholar
  20. 20.
    H.E. Graeb, Analog Design Centering and Sizing (Springer, Dordrecht, 2007)Google Scholar
  21. 21.
    Á. Bűrmen, H. Habal, Computing worst-case performance and yield of analog integrated circuits by means of mesh adaptive direct search. J. Microelectron. Electron. Comp. Mater. 45(2), 160–170 (2015)Google Scholar
  22. 22.
    X. Pan, H. Graeb, Reliability analysis of analog circuits using quadratic lifetime worst-case distance prediction, in IEEE Custom Integrated Circuits Conf. 2010, San Jose, CA, 2010Google Scholar
  23. 23.
    E. Sciacca, S. Spinella, A.M. Anile, Possibilistic worst case distance and applications to circuit sizing, in Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, (Springer, Berlin, 2007), pp. 287–295CrossRefGoogle Scholar
  24. 24.
    L. Opalski, Remarks on statistical design centering. Int. J. Electron. Telecommun. 57(2), 159–167 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto Superior TécnicoInstituto de TelecomunicaçõesLisbonPortugal
  2. 2.Instituto Politécnico de TomarInstituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations