AIDA-C Variation-Aware Circuit Synthesis Tool



This chapter presents a short overview of AIDA-C flow. Also, changes related to the implementation of the new MC-based yield estimation methodology, which led to the new AIDA-C Variation-Aware version tool, are detailed. AIDA-C is an analog circuit sizing simulation-based, multi-objective, and multi-constraint optimization tool. As a simulation-based optimization tool, AIDA-C evaluates potential solutions using an electrical simulator. Among the different circuit simulators supported by the evaluation module are commercial simulators, such as Cadence® Spectre®, Mentor Graphics’ ELDO™, or Synopsys® HSPICE®, and open-source simulators like the NGSpice circuit simulator.


Analog IC synthesis Process capability index Parametric yield 


  1. 1.
    N. Lourenço, R. Martins, N. Horta, Automatic Analog IC Sizing and Optimization Constrained with PVT Corners and Layout Effects (Springer International Publishing, Cham, 2017)CrossRefGoogle Scholar
  2. 2.
    N. Lourenço, R. Martins, A. Canelas, R. Póvoa, N. Horta, AIDA: layout-aware analog circuit-level sizing with in-loop layout generation. Integration VLSI J. 55, 316–329 (2016)CrossRefGoogle Scholar
  3. 3.
    R. Martins, N. Lourenço, N. Horta, Analog Integrated Circuit Design Automation – Placement, Routing and Parasitic Extraction Techniques (Springer International Publishing, Cham, 2017)Google Scholar
  4. 4.
    Mentor, A Siemens Business. [Online]. Available: Accessed 10 Sept 2017
  5. 5.
    C. McAndrew, I.-S. Lim, B. Braswell, D. Garrity, Corner models: inaccurate at best, and it only gets worst…, in Proc. IEEE Custom Integr. Circuits Conf., 2013Google Scholar
  6. 6.
    S. Bandyopadhyay, S. Saha, Some single- and multiobjective optimization techniques, in Unsupervised Classification: Similarity Measures, Classical and Metaheuristic Approaches, and Applications, (Springer, Berlin, 2013), pp. 17–55CrossRefGoogle Scholar
  7. 7.
    M. Reyes-sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)MathSciNetGoogle Scholar
  8. 8.
    R. Lourenço, N. Lourenço, N. Horta, AIDA-CMK: Multi-Algorithm Optimization Kernel Applied to Analog IC Sizing (Springer International Publishing, Cham, 2015)CrossRefGoogle Scholar
  9. 9.
    A. Canelas, R. Martins, R. Póvoa, N. Lourenço, J. Guilherme, N. Horta, Enhancing an automatic analog IC design flow by using a technology-independent module generator, in Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design, (IGI-Global, Hershey, PA, 2014), pp. 102–133Google Scholar
  10. 10.
    E. Maricau, G. Gielen, Analog IC Reliability in Nanometer CMOS (Springer-Verlag, New York, 2013)CrossRefGoogle Scholar
  11. 11.
    M. Aslam, Statistical monitoring of process capability index having one sided specification under repetitive sampling using an exact distribution. IEEE Access 6, 25270–25276 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.T. Tai, W.L. Pearn, Measuring the manufacturing yield for skewed wire bonding processes. IEEE Trans. Semicond. Manuf. 28(3), 424–430 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Moretti, Senior Editor Chip Design Magazine, Complexity of Mixed-signal Designs, 28 Aug 2014. [Online]. Available: Accessed 16 Sept 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto Superior TécnicoInstituto de TelecomunicaçõesLisbonPortugal
  2. 2.Instituto Politécnico de TomarInstituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations