Skip to main content

Nanoscale Pattern Formation in Biological Surfaces

  • Chapter
  • First Online:
Combined Discrete and Continual Approaches in Biological Modelling

Part of the book series: Biologically-Inspired Systems ((BISY,volume 16))

  • 325 Accesses

Abstract

In the present chapter, three problems of nanoscale pattern formation will be discussed. (1) The particular symmetry violation in the dimple-like nano-pattern on the belly scales of the pythonid snake Morelia viridis is analyzed using correlation analysis of the distances between individual nanostructures. (2) Pattern formation in the multi-component colloidal secretion of whip-spiders (cerotegument) is numerically simulated and discussed. (3) Pattern formation of the springtail cuticle nanostructures.

Dimple-like nano-pattern on the belly scales of the snake skin is supposed to reduce both friction and abrasion. On the real snake skin surface, the pattern analysis revealed non-random, but very specific symmetry violation. The results of the analysis, performed on the snake were compared with nano-nipple pattern on the eye of the sphingid moth being well known reference of highly-ordered biological nanopatterns. In the case of the moth eye, the nano-nipple arrangement forms a set of domains, while, in the case of the snake skin, the nano-dimples arrangement resembles an ordering of molecules in amorphous state, which might provide friction isotropy to the skin. A simple model of such pattern formation is suggested, which almost perfectly reproduces the experimental results. Some other biological surfaces gain their super-hydrophobic properties by nano-structures on the surface. Some arachnids, such as the cryptic, large whip-spiders and some mites, exhibit a crust of dried secretion containing globular micro-structures covered with regularly arranged nano-particles built from a multi-phasic secretion. In order to gain a better understanding of the process of self-assembly of nanostructures on spherical microstructures, in the present chapter, we studied it from a theoretical point of view. It is demonstrated that slight changes of simple parameters lead to a variety of morphologies highly similar to the ones observed in the species specific cerotegument structures. Also springtails have a complex hierarchically structured cuticle surface with even stronger repelling properties against water, low-surface-tension liquids, and sticky secrets of predatory insects. Non-wetting property of the collembolan cuticle is mainly based on the cuticle topography rather than on the surface chemistry. In material science, analogous surface coatings have been produced by colloidal lithography utilizing the self-assembly of nanoparticles on a substrate. We introduce here a numerical model to study the effect of different interactions between the substances on the morphology of the desired structure. In general the study of biological self-organising nanopatterns and their evolution seems to be a promising approach for generating new solutions for future industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti G, Storch V, Renner H (1981) Ãœber den feinstrukturellen Aufbau der Milbencuticula (Acari, Arachnida). Zool Jb Anat 105:183–236

    Google Scholar 

  • Badge I, Bhawalkar SP, Jia L, Dhinojwala A (2013) Tuning surface wettability using single layered and hierarchically ordered arrays of spherical colloidal particles. Soft Matter 9:3032–3040

    CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    CAS  Google Scholar 

  • Barthlott W, Mail M, Neinhuis C (2016) Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Phil Trans R Soc A 374:20160191

    PubMed  Google Scholar 

  • Baum M, Heepe L, Gorb SN (2014) Friction behavior of a microstructured polymer surface inspired by snake skin. Beilstein J Nanotechnol 5:83–97

    PubMed  PubMed Central  Google Scholar 

  • Bernhard CG, Miller WH (1962) A corneal nipple pattern in insect compound eyes. Acta Physiol Scand 56:385–386

    CAS  PubMed  Google Scholar 

  • Berthé RA, Westhoff G, Bleckmann H, Gorb SN (2009) Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae). J Comp Physiol A 195:311–318

    Google Scholar 

  • Blagodatski A, Sergeev A, Kryuchkova M, Lopatinad Y, Katanaev VL (2015) Diverse set of Turing nanopatterns coat corneae across insect lineages. Proc Natl Acad Sci U S A 112:10750–10755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennell RA (1946) Study of an insect cuticle: the larval cuticle of Sarcophaga faculata Pand. (Diptera). Proc R Soc B 133:348–373

    CAS  Google Scholar 

  • Erber T, Hockney GM (1991) Equilibrium configurations of N equal charges on a sphere. J Phys A Math Gen 24:L1369–L1377

    Google Scholar 

  • Filippov AE (1997) Kinetics of vortex structure formation in magnetic materials. J Exp Theor Phys 84:971–977

    Google Scholar 

  • Filippov AE (1998) Two-component model for the growth of porous subsurface layers. J Exp Theor Phys 87:814–822

    Google Scholar 

  • Filippov AE, Wolff JO, Seiter M, Gorb SN (2017) Numerical simulation of colloidal self-assembly of super-hydrophobic arachnid cerotegument structures. J Theor Biol 430:1–8

    CAS  PubMed  Google Scholar 

  • Filippov AE, Kovalev A, Gorb SN (2018) Numerical simulation of the pattern formation of the springtail cuticle nanostructures. J R Soc Interface 15:20180217

    PubMed  PubMed Central  Google Scholar 

  • Geim AK, Grigorieva IV, Dubonos SV, Lok JGS, Maan JC, Filippov AE, Peeters FM (1997) Phase transitions in individual sub-micrometre superconductors. Nature 390:259–262

    CAS  Google Scholar 

  • Gorb SN (1997) Porous channels in the cuticle of the head-arrester system in dragon/damselflies (Insecta: Odonata). Microsc Res Tech 37:583–591

    CAS  PubMed  Google Scholar 

  • Hale WG, Smith AL (1966) Scanning electron microscope studies of cuticular structures in the genus Onychiurus (Collembola). Rev Ecol Biol Sol 3:343–354

    Google Scholar 

  • Helbig R, Nickerl J, Neinhuis C, Werner C (2011) Smart skin patterns protect springtails. PLoS One 6:e25105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hensel R, Helbig R, Aland S, Braun H-G, Voigt A, Neinhuis C, Werner C (2013a) Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures. Langmuir 29:1100–1112

    CAS  PubMed  Google Scholar 

  • Hensel R, Helbig R, Aland S, Voigt A, Neinhuis C, Werner C (2013b) Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater 5:e37

    Google Scholar 

  • Hensel R, Finn A, Helbig R, Braun H-G, Neinhuis C, Fischer W-J, Werner C (2014) Biologically inspired omniphobic surfaces by reverse imprint lithography. Adv Mater 26:2029–2033

    CAS  PubMed  Google Scholar 

  • Klein M-CG, Gorb SN (2012) Epidermis architecture and material properties of the skin of four snake species. J R Soc Interface 9:3140–3155

    PubMed  PubMed Central  Google Scholar 

  • Klein M-CG, Gorb SN (2014) Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes). Zoology 117:295–314

    PubMed  Google Scholar 

  • Klein M-CG, Deuschle JK, Gorb SN (2010) Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae). J Comp Physiol A 196:659–668

    Google Scholar 

  • Koerner L, Gorb SN, Betz O (2012) Adhesive performance of the stick-capture apparatus of rove beetles of the genus Stenus (Coleoptera, Staphylinidae) toward various surfaces. J Insect Physiol 58:155–163

    CAS  PubMed  Google Scholar 

  • Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Physics C: Solid State Physics 6:1181–1203

    CAS  Google Scholar 

  • Kovalev A, Filippov AE, Gorb SN (2016) Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis. Applied Physics A 122:1–6

    CAS  Google Scholar 

  • Krzysztofowicz A, Klag J, Komorowska B (1972) The fine structure of the cuticle in Tetrodontophora bielanensis (Waga), Collembola. Acta Biol Cracoviensia Ser Zool 15:113–119

    Google Scholar 

  • Lee KC, Erb U (2015) Remarkable crystal and defect structures in butterfly eye nano-nipple arrays. Arthropod Struct Dev 44:587–594

    PubMed  Google Scholar 

  • Li R, Bowerman B (2010) Symmetry breaking in biology. Cold Spring Harb Perspect Biol 2:a003475

    PubMed  PubMed Central  Google Scholar 

  • Locke M (1961) Pore canals and related structures in insect cuticle. J Biophys Biochem Cytol 10:589–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miskimen GW, Rodriguez NL (1981) Structure and functional aspects of the Scotopic compound eye of the sugarcane borer moth. J Morphol 168:73–84

    PubMed  Google Scholar 

  • Mityushev V (2016) Pattern formations and optimal packing. Math Biosci 274: 12–16 and Chapter 9 of Bressloff PC 2014 Stochastic processes in cell biology. Springer, Cham

    Google Scholar 

  • Nickerl J, Helbig R, Schulz H-J, Werner C, Neinhuis C (2013) Diversity and potential correlations to the function of Collembola cuticle structures. Zoomorphology 132:183–195

    Google Scholar 

  • Nickerl J, Tsurkan M, Hensel R, Neinhuis C, Werner C (2014) The multilayered protective cuticle of Collembola: a chemical analysis. J R Soc Interface 11:20140619

    PubMed  PubMed Central  Google Scholar 

  • Peisker H, Gorb SN (2010) Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. J Exp Biol 213:3457–3462

    PubMed  Google Scholar 

  • Prum RO, Torres RH (2003) Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J Exp Biol 206:2409–2429

    PubMed  Google Scholar 

  • Rakitov R, Gorb SN (2013) Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proc R Soc Lond B 280:20122391

    Google Scholar 

  • Raspotnig G, Matischek T (2010) Anti-wetting strategies of soil-dwelling Oribatida (Acari). Acta Soc Zool Bohem 74:91–96

    Google Scholar 

  • Richards AG (1951) The integument of arthropods. The chemical composition and their properties, the anatomy and development, and the permeability. University of Minnnesota Press, Minneapolis, London, Geoffrey Cumberlege, Oxford University Press

    Google Scholar 

  • Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodivers Conserv 7:1207–1219

    Google Scholar 

  • Schmidt CV, Gorb SN (2012) Snake scale microstructure: phylogenetic significance and functional adaptations. Zoologica 157:1–106

    Google Scholar 

  • Sergeev A, Timchenko AA, Kryuchkov M, Blagodatski A, Enin GA, Katanaev VL (2015) Origin of order in bionanostructures. RSC Adv 5:63521–63527

    CAS  Google Scholar 

  • Stalleicken J, Labhart T, Mouritsen H (2006) Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J Comp Physiol A 192:321–331

    Google Scholar 

  • Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2006) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc Lond B Biol Sci 273:661–667

    CAS  Google Scholar 

  • Tammes PML (1930) On the origin of number and arrangement of the places of exit on pollen grains. Recl Trav Bot Néerl 27:1–84

    Google Scholar 

  • Tarnai T, Gáspár Z (1987) Multi-symmetric close packings of equal spheres on the spherical surface. Acta Crystallogr 43:612–616

    Google Scholar 

  • Thompson CV (2000) Structure evolution during processing of polycrystalline films. Ann Rev Mater Sci 30:159–190

    CAS  Google Scholar 

  • Varenberg M, Halperin G, Etsion I (2002) Different aspects of the role of wear debris in fretting wear. Wear 252:902–910

    CAS  Google Scholar 

  • Weygoldt P (2000) Whip spiders, (Chelicerata, Amblypygi), their biology, morphology and systematics. Apollo Books, Stenstrup, p 163

    Google Scholar 

  • Wiggelsworth VB (1947) The epicuticle in an insect, Rhodnius prolixus. Proc R Ent Soc L B 134:163–181

    Google Scholar 

  • Wiggelsworth VB (1976) The distribution of lipid in cuticle of Rhodnius. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam, pp 89–106

    Google Scholar 

  • Wolff JO, Schwaha T, Seiter M, Gorb SN (2016) Whip spiders (Amblypygi) become water-repellent by a colloidal secretion that self-assembles into hierarchical microstructures. Zool Letters 2(N23):1–10

    Google Scholar 

  • Wolff JO, Seiter M, Gorb SN (2017) The water-repellent cerotegument of whip-spiders (Arachnida: Amblypygi). Arthropod Struct Dev 46:116–129

    PubMed  Google Scholar 

  • Yang SM, Jang SG, Choi DG, Kim S, Yu HK (2006) Nanomachining by colloidal lithography. Small 2:458–475

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

8.1 Supplementary Electronic Material(s)

(MP4 15675 kb)

(MP4 4511 kb)

(MP4 3482 kb)

(MP4 5535 kb)

(MP4 4940 kb)

(MP4 4226 kb)

(MP4 4201 kb)

(MP4 4085 kb)

(MP4 4320 kb)

(MP4 5543 kb)

(MP4 6220 kb)

(MP4 1719 kb)

(MP4 1721 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippov, A.E., Gorb, S.N. (2020). Nanoscale Pattern Formation in Biological Surfaces. In: Combined Discrete and Continual Approaches in Biological Modelling . Biologically-Inspired Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-41528-0_8

Download citation

Publish with us

Policies and ethics