Anisotropic Friction in Biological Systems

  • Alexander E. Filippov
  • Stanislav N. Gorb
Part of the Biologically-Inspired Systems book series (BISY, volume 16)


Biological surfaces covered with micro- and nanostructures, oriented at some angle to the plain may cause strong mechanical anisotropy. Some of them also exhibit pronounced flexibility due to the material of the supporting layer or due to flexible connecting joints. Flexible systems have a wide range of functions including the transport of particles in insect cleaning devices and the propulsion generation during slithering locomotion of snakes. In this chapter, we study the dependence of the anisotropic friction on the slope of the structures, rigidity of their joints, and sliding speed. A system of this kind is the snake skin consisting of stiff scales embedded in a flexible supporting layer. Additionally, there is also microstructure with strongly anisotropic orientation on these scales, which provides frictional anisotropy of the skin. The main function of such hierarchical anisotropic structures is to generate low sliding friction in the forward sliding direction, and high propulsive force along the substrate. Snakes are also able to dynamically adapt their friction interactions by redistributing their local pressures and changing their winding angles, when either friction anisotropy is suppressed by the low friction substrate, or when the external force displacing snake overcomes friction resistance on inclines. In order to understand these biotribology problems, we develop a set of corresponding numerical models.

Supplementary material

Movie 5.1

(MP4 198 kb)

Movie 5.2

(MP4 223 kb)

Movie 5.3

(MP4 138 kb)

Movie 5.4

(MP4 180 kb)

Movie 5.5

(MP4 956 kb)

Movie 5.6

(MP4 6321 kb)

Movie 5.7

(MP4 1037 kb)

Movie 5.8

(MP4 9582 kb)

Movie 5.9

(MP4 1921 kb)


  1. Abdel-Aal HA (2018) Surface structure and tribology of legless squamate reptiles. J Mech Behav Biomed Mater 79:354–398PubMedGoogle Scholar
  2. Abdel-Aal HA, Vargiolu R, Zahouani H, El Mansori M (2012) Preliminary investigation of the frictional response of reptilian shed skin. Wear 290–291:51–60Google Scholar
  3. Alben S (2013) Optimizing snake locomotion in the plane. Proc R Soc A 469:20130236Google Scholar
  4. Austin AD, Browning TO (1981) A mechanism for movement of eggs along insect ovipositors. Int J Insect Morphol Embryol 10:93–108Google Scholar
  5. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685PubMedGoogle Scholar
  6. Bauer G, Klein MC, Gorb SN, Speck T, Voigt D, Gallenmüller F (2010) Always on the bright side: the climbing mechanism of Galium aparine. Proc R Soc B 278:2233–2239PubMedGoogle Scholar
  7. Baum MJ, Heepe L, Gorb SN (2014a) Friction behavior of a microstructured polymer surface inspired by snake skin. Beilstein J Nanotechnol 5:83–97PubMedPubMedCentralGoogle Scholar
  8. Baum MJ, Kovalev AK, Michels J, Gorb SN (2014b) Anisotropic friction of the ventral scales in the snake Lampropeltis getula californiae. Tribol Lett 54:139–150Google Scholar
  9. Benz MJ, Kovalev AE, Gorb SN (2012) Anisotropic frictional properties in snakes. In: Lakhtakia A, Martín-Palma RJ (eds) Bioinspiration, biomimetics, and bioreplication, Proc SPIE 8339, p 11Google Scholar
  10. Berthé R, Westhoff G, Bleckmann H, Gorb SN (2009) Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae). J Comp Physiol A 195:311–318Google Scholar
  11. Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci U S A 101:14138–14143PubMedPubMedCentralGoogle Scholar
  12. Bowden FP, Tabor D (1986) The friction and lubrication of solids. Clarendon Press, OxfordGoogle Scholar
  13. Chiasson RB, Lowe CH (1989) Ultrastructural scale patterns in Nerodia and Thamnophis. J Herpetol 23:109–118Google Scholar
  14. Clemente CJ, Dirks J-H, Barbero DR, Steiner U, Federle W (2009) Friction ridges in cockroach climbing pads: anisotropy of shear stress measured on transparent, microstructured substrates. J Comp Physiol A 195:805–814Google Scholar
  15. Conde-Boytel R, Erickson EH, Carlson SD (1989) Scanning electron microscopy of the honeybee, Apis mellifera L. (Hymenoptera: Apidae) pretarsus. Int J Insect Morphol Embryol 18:59–69Google Scholar
  16. Dashman T (1953) The unguitractor plate as a taxonomic tool in the Hemiptera. Ann Entomol Soc Am 46:561–578Google Scholar
  17. Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886PubMedGoogle Scholar
  18. Filippov AE, Gorb SN (2013) Frictional-anisotropy-based systems in biology: structural diversity and numerical model. Sci Rep 3:1240PubMedPubMedCentralGoogle Scholar
  19. Filippov AE, Gorb SN (2016) Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures. Sci Rep 6:23539PubMedPubMedCentralGoogle Scholar
  20. Filippov AE, Popov V (2008) Directed molecular transport in an oscillating channel with randomness. Phys Rev E 77:N211114Google Scholar
  21. Filippov AE, Westhoff G, Kovalev A, Gorb SN (2018) Numerical model of the slithering snake locomotion based on the friction anisotropy of the ventral skin. Tribol Lett 66:119Google Scholar
  22. Fleishman D, Filippov AE, Urbakh M (2004) Directed molecular transport in an oscillating symmetric channel. Phys Rev E 69:011908Google Scholar
  23. Gans C (1984) Slide-pushing: a transitional locomotor method of elongate squamates. Symp Zool Soc Lond 52:12–26Google Scholar
  24. Goel SC (1972) Notes on the structure of the unguitractor plate in Heteroptera (Hemiptera). J Entomol 46:167–173Google Scholar
  25. Gorb SN (1996) Design of insect unguitractor apparatus. J Morphol 230:219–230PubMedGoogle Scholar
  26. Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic PublishersGoogle Scholar
  27. Gorb EV, Gorb SN (2002) Contact separation force of the fruit burrs in four plant species adapted to dispersal by mechanical interlocking. Plant Physiol Biochem 40:373–381Google Scholar
  28. Gorb EV, Gorb SN (2009) Functional surfaces in the pitcher of the carnivorous plant Nepenthes alata: a cryo-SEM approach. In: Gorb SN (ed) Functional surfaces in biology: adhesion related systems, vol 2, pp 205–238Google Scholar
  29. Gorb EV, Gorb SN (2011) The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment. Beilstein J Nanotechnol 2:302–310PubMedPubMedCentralGoogle Scholar
  30. Gorb SN, Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc Lond B 267:1239–1244Google Scholar
  31. Gorb SN, Sinha M, Peressadko A, Daltorio KA, Quinn RD (2007) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspir Biomim 2:S117–S125PubMedGoogle Scholar
  32. Gower DJ (2003) Scale microornamentation of uropeltid snakes. J Morphol 258:249–268PubMedGoogle Scholar
  33. Greiner C, Schäfer M (2015) Bio-inspired scale-like surface textures and their tribological properties. Bioinspir Biomim 10:044001PubMedGoogle Scholar
  34. Hazel J, Stone M, Grace MS, Tsukruk VV (1999) Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J Biomech 32:477–484PubMedGoogle Scholar
  35. Hoge AR, Santos PS (1953) Submicroscopic structure of “stratum corneum” of snakes. Science 118:410–411PubMedGoogle Scholar
  36. Hu DL, Nirody J, Scott T, Shelley MJ (2009) The mechanics of slithering locomotion. Proc Natl Acad Sci U S A 106:10081–10085PubMedPubMedCentralGoogle Scholar
  37. Huber G, Gorb SN, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4PubMedPubMedCentralGoogle Scholar
  38. Irish FJ, Williams EE, Seling E (1988) Scanning electron microscopy of changes in epidermal structure occurring during the shedding cycle in squamate reptiles. J Morphol 197:105–126PubMedGoogle Scholar
  39. Jayne BC (1986) Kinematics of terrestrial snake locomotion. Copeia 22:915–927Google Scholar
  40. Klein M-CG, Deuschle JK, Gorb SN (2010) Material properties of the skin of the Kenyan sandboa Gongylophis colubrinus (Squamata, Boidae). J Comp Physiol A 196:659–668Google Scholar
  41. Liley M (1998) Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280:273–275PubMedGoogle Scholar
  42. Maderson PFA (1972) When? Why? And how? Some speculations on the evolution of vertebrate integument. Am Zool 12:159–171Google Scholar
  43. Manoonpong P, Gorb S, Heepe, L (2017) Exploiting frictional anisotropy from a scale-like material for energy-efficient robot locomotion. ISBE Newsletter 6:9–10Google Scholar
  44. Marvi H, Hu DL (2012) Friction enhancement in concertina locomotion of snakes. J R Soc Interface 9:3067–3080PubMedPubMedCentralGoogle Scholar
  45. Mickoleit G (1973) Über den Ovipositor der Neuropteroidea und Coleoptera und seine phylogenetische Bedeutung (Insecta, Holometabola). Z Morphol Tiere 74:37–64Google Scholar
  46. Mühlberger M, Rohn M, Danzberger J, Sonntag E, Rank A, Schumm L, Kirchner R, Forsich C, Gorb SN, Einwögerer B, Trappl E, Heim D, Schift H, Bergmair I (2015) UV-NIL fabricated bio-inspired inlays for injection molding to influence the friction behavior of ceramic surfaces. Microelectron Eng 141:140–144Google Scholar
  47. Müller HJ (1941) Über Bau und Funktion des Legeapparates der Zikaden (Homoptera Cicadina). Z Morphol Ökol Tiere 38:534–629Google Scholar
  48. Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol 21:1281–1296Google Scholar
  49. Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  50. Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1232Google Scholar
  51. Niitsuma K, Miyagawa S, Osaki S (2005) Mechanical anisotropy in cobra skin is related to body movement. Eur J Morphol 42:193–200PubMedGoogle Scholar
  52. Picado C (1931) Epidermal microornaments of the crotalinae. Bull Antivenin Inst Am 4:104–105Google Scholar
  53. Price RM (1982) Dorsal snake scale microdermatoglyphics: ecological indicator or taxonimical tool? J Herpetol 16:294–306Google Scholar
  54. Price RM, Kelly P (1989) Microdermatoglyphics: basal patterns and transition zones. J Herpetol 23:244–261Google Scholar
  55. Reif W-E, Dinkelacker A (1982) Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrb Geol Paläontol 164:184–187Google Scholar
  56. Renous S, Gasc JP, Diop A (1985) Microstructure of the tegumentary surface of the Squamata (Reptilia) in relation to their spatial position and their locomotion. Fortschr Zool 30:487–489Google Scholar
  57. Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, Stegmaier T, Sarsour J, Linke M, Konrad W (2012) Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface 9:1965–1974PubMedPubMedCentralGoogle Scholar
  58. Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Springer, BerlinGoogle Scholar
  59. Schmidt CV, Gorb SN (2012) Snake scale microstructure: phylogenetic significance and functional adaptations, Zoologica. Schweizerbart Science Publisher, StuttgartGoogle Scholar
  60. Schönitzer K (1986) Comparative morphology of the antenna cleaner in bees (Apoidea). Z Zool Syst Evolutionsforsch 24:35–51Google Scholar
  61. Schönitzer K, Lawitzky G (1987) A phylogenetic study of the antenna cleaner in Formicidae, Mutillidae and Tiphiidae (Insecta, Hymenoptera). Zoomorphology 107:273–285Google Scholar
  62. Schönitzer K, Penner M (1984) The function of the antenna cleaner of the honeybee (Apis mellifica). Apidologie 15:23–32Google Scholar
  63. Seifert P, Heinzeller T (1989) Mechanical, sensory and glandular structures in the tarsal unguitractor apparatus of Chironomus riparius (Diptera, Chironomidae). Zoomorphology 109:71–78Google Scholar
  64. Smith EL (1972) Biosystematics and morphology of symphyta. 3 External genitalia of Euura. Int J Insect Morphol Embryol 1:321–365Google Scholar
  65. Tramsen HT, Gorb SN, Zhang H, Manoonpong P, Dai Z, Heepe L (2018) Inversion of friction anisotropy in a bio-inspired asymmetrically structured surface. J R Soc Interface 15:1–7Google Scholar
  66. Wang X, Osborne MT, Alben S (2014) Optimizing snake locomotion on an inclined plane. Phys Rev E 89:012717Google Scholar
  67. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alexander E. Filippov
    • 1
  • Stanislav N. Gorb
    • 2
  1. 1.Donetsk Institute for Physics and EngineeringDonetskUkraine
  2. 2.Zoological InstituteKiel UniversityKielGermany

Personalised recommendations