Skip to main content

Contact Between Biological Attachment Devices and Rough Surfaces

  • Chapter
  • First Online:
Combined Discrete and Continual Approaches in Biological Modelling

Part of the book series: Biologically-Inspired Systems ((BISY,volume 16))

Abstract

Spatula is an individual adhesive element situated at the tip of an adhesive hair in geckos, spiders and some insects. Usually, the contact area and work of adhesion depends on the type of the substrate. It is interesting to note that the interaction of a spatula-like hair tip with the substrate is practically independent on the numerical approach by which the substrate is modeled. However, in the experiments on real animals, as well as in numerically-modeled adhesion of this type of contact systems, pull-off force drops at some particular substrate roughness. In this chapter, we present a numerical model, which is capable to explain experimentally found effect of the adhesion drop at the scale of spatula. Besides we apply our numerical approach to study dynamics of spatular tips during contact formation and show that the contact area of the tips increases under applied shear force, especially, when spatulae are misaligned prior to the contact formation. The shear force has an optimum, when maximal contact is formed, but no slip occurs. In such a state, maximal adhesion can be generated. Another factor influencing attachment is the pad secretion, which flow on rough substrates is studied numerically here. The obtained results demonstrate that an increase in the density of the substrate microstructures leads to an increase in fluid loss from the pad. Additional numerical study, discussed in this chapter, deals with adhesive properties of plant fruits used for dispersal. These fruits can readily stick using secretion provided by the set of glands arranged in a smart manner radially at the distal end of the cut-cone-shaped fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou B, Gay C, Laurent B, Cardoso O, Voigt D, Peisker H, Gorb SN (2010) Extensive collection of femtolitre pad secretion droplets in the beetle Leptinotarsa decemlineata allows nanolitre microrheology. J R Soc Interface 7(53):1745–1752

    PubMed  PubMed Central  Google Scholar 

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100:10603–10606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    PubMed  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    CAS  PubMed  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579

    CAS  PubMed  Google Scholar 

  • Bauchhenss E (1979) Die Pulvillen von Calliphora erythrocephala Meig. (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphologie 93:99–123

    Google Scholar 

  • Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems part 1. Springer, pp 111–152

    Google Scholar 

  • Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci U S A 101(39):14138–14143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandes D (2015) Some contributions on Commicarpus helenae (Roemer and Schultes) Meikle on Fuerteventura (Canary Islands, Spain). Braunschweiger Geobotanische Arbeiten 10:67–75

    Google Scholar 

  • Brennan EB, Weinbaum SA (2001) Effect of epicuticular wax on adhesion of psyllids to glaucous juvenile and glossy adult leaves of Eucalyptus globulus Labillardière. Aust J Entomol 40:270–277

    Google Scholar 

  • Bullock JMR, Federle W (2009) Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance. J Exp Biol 212:1876–1888

    PubMed  Google Scholar 

  • Bullock J, Federle W (2011) Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae. Naturwissenschaften 98:381–387

    PubMed  Google Scholar 

  • Bullock JMR, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    PubMed  Google Scholar 

  • Chen B, Wu PD, Gao H (2009) Pre-tension generates strongly reversible adhesion of a spatula pad on a substrate. J R Soc Interface 6:529–537

    PubMed  Google Scholar 

  • Creton C, Gorb SN (2007) Sticky feet: from animals to materials. MRS Bull 32:466–472

    Google Scholar 

  • Diens G, Klemm H (1946) Theory and application of the parallel plate plastometer. J Appl Phys 17:458–471

    Google Scholar 

  • Dirks J-H, Federle W (2011) Mechanisms of fluid production in smooth adhesive pads of insects. J R Soc Interface 8:952–960

    PubMed  PubMed Central  Google Scholar 

  • Dirks J-H, Clemente CJ, Federle W (2010) Insect tricks: two-phasic foot pad secretion prevents slipping. J R Soc Interface 7:587–593

    PubMed  Google Scholar 

  • Douglas NA, Spellenberg R (2010) A new tribal classification of Nyctaginaceae. Taxon 59:905–910

    Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222

    Google Scholar 

  • Edwards PB (1982) Do waxes of juvenile Eucalyptus leaves provide protection from grazing insects? Aust J Ecol 7:347–352

    Google Scholar 

  • Edwards JS, Tarkanian M (1970) The adhesive pads of Heteroptera: a re-examination. Proc R Entomol Soc Lond A 45(1–3):1–5

    Google Scholar 

  • Edwards PB, Wanjura WJ (1990) Physical attributes of eucalypt leaves and the host range of chrysomelid beetles. Symp Biol Hung 39:227–236

    Google Scholar 

  • Eigenbrode SD (1996) Plant surface waxes and insect behaviour. In: Kerstiens G (ed) Plant cuticles – an integral functional approach. BIOS, Oxford, pp 201–222

    Google Scholar 

  • Eigenbrode SD, Jetter R (2002) Attachment to plant surface waxes by an insect predator. Integr Comp Biol 42(6):1091–1099

    CAS  PubMed  Google Scholar 

  • Eigenbrode SD, Kabalo NN (1999) Effects of Brassica oleracea waxblooms on predation and attachment by Hippodamia convergens. Entomol Exp Appl 91:125–130

    Google Scholar 

  • Eimüller T, Guttmann P, Gorb S (2008) Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy. J Exp Biol 211:1958–1963

    PubMed  Google Scholar 

  • Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci U S A 97(12):6568–6573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy. J Exp Biol 209:2611–2621

    PubMed  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    PubMed  Google Scholar 

  • Filippov AE, Popov VL (2007a) Fractal Tomlinson model for mesoscopic friction: from microscopic velocity-dependent damping to macroscopic Coulomb friction. Phys Rev E 75:027103

    CAS  Google Scholar 

  • Filippov AE, Popov V (2007b) Flexible tissue with fibres interacting with an adhesive surface. J Phys Condens Matter 19:096012

    Google Scholar 

  • Filippov A, Popov V, Gorb S (2011) Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. J Theor Biol 276:126–131

    PubMed  Google Scholar 

  • Filippov AE, Gorb EV, Gorb SN (2017) Radial arrangement of apical adhesive sites promotes contact self-alignment of fruits in Commicarpus plants (Nyctaginaceae). Sci Rep 7:10956

    PubMed  PubMed Central  Google Scholar 

  • Gao H, Wang X, Yao H, Gorb SN, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285

    Google Scholar 

  • Gaume L, Gorb SN, Rowe N (2002) Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytol 156:479–489

    Google Scholar 

  • Gilett J, Wigglesworth V (1932) The climbing organ of an insect, Rhodnius prolixus (Hemiptera; Reduviidae). Proc R Soc Lond B 111:364–376

    Google Scholar 

  • Gorb SN (1998a) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265:747–752

    Google Scholar 

  • Gorb SN (1998b) Frictional surfaces of the elytra to body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae): design of co-opted fields of microtrichia and cuticle ultrastructure. Int J Insect Morphol Embryol 27:205–225

    Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gorb S (2005) Uncovering insect stickiness: structure and properties of hairy attachment devices. Am Entomol 51:31–35

    Google Scholar 

  • Gorb SN (2006) Fly microdroplets viewed big: a Cryo-SEM approach. Microsc Today 14(5):38–39

    Google Scholar 

  • Gorb SN (2008) Smooth attachment devices in insects. In: by Casas J, Simpson SJ (eds) Advances in insect physiology, vol. 34: insect mechanics and control. Elsevier Ltd./Academic, London, pp 81–116

    Google Scholar 

  • Gorb SN, Beutel RG (2001) Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88:530–534

    CAS  PubMed  Google Scholar 

  • Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105:13–28

    Google Scholar 

  • Gorb EV, Gorb SN (2008) Effects of surface topography and chemistry of Rumex obtusifolius leaves on the attachment of the beetle Gastrophysa viridula. Entomol Exp Appl 130:222–228

    Google Scholar 

  • Gorb SN, Varenberg M (2007) Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21(12–13):1175–1183

    CAS  Google Scholar 

  • Gorb EV, Haas K, Henrich A, Enders S, Barbakadze N, Gorb SN (2005) Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. J Exp Biol 208:4651–4662

    CAS  PubMed  Google Scholar 

  • Gorb SN, Sinha M, Peressadko A, Daltorio KA, Quinn RD (2007) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspir Biomim 2:S117–S125

    PubMed  Google Scholar 

  • Gorb EV, Voigt D, Eigenbrode SD, Gorb SN (2008) Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod Plant Interact 2:247–259

    Google Scholar 

  • Gorb EV, Hosoda N, Miksch C, Gorb SN (2010) Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system. J R Soc Interface 7:1571–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heepe L, Gorb SN (2014) Biologically inspired mushroom-shaped adhesive microstructures. Annu Rev Mater Res 44:173–203

    CAS  Google Scholar 

  • Hickey M, King C (2000) The Cambridge illustrated glossary of botanical terms. Cambridge University Press, Cambridge

    Google Scholar 

  • Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62:307–362

    Google Scholar 

  • Hosoda N, Gorb SN (2011) Friction force reduction triggers feet grooming behaviour in beetles. Proc R Soc B 278:1748–1752

    PubMed  Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005a) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    PubMed  PubMed Central  Google Scholar 

  • Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005b) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci U S A 102(45):16293–16296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber G, Gorb SN, Hosoda N, Spolenak R, Arzt E (2007) Influence of surface roughness on gecko adhesion. Acta Biomater 3:607–610

    PubMed  Google Scholar 

  • Hui C-Y, Glassmaker N, Jagota A (2005) How compliance compensates for surface roughness in fibrillar adhesion. J Adhes 81:699–721

    CAS  Google Scholar 

  • Ishii S (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl Entomol Zool 22(2):222–228

    Google Scholar 

  • Joshi AC, Rao VSR (1934) Vascular anatomy of the flowers of four Nyctaginaceae. J Indian Bot Soc 13:169–186

    Google Scholar 

  • Kendall K (1975) Thin-film peeling – the elastic term. J Phys D Appl Phys 8:1449–1452

    Google Scholar 

  • Kim TW, Bhushan B (2007) Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21(1):1–20

    CAS  Google Scholar 

  • Kim S, Sitti M (2006) Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett 89:261911

    Google Scholar 

  • Kim S, Aksak B, Sitti M (2007) Enhanced friction of elastomer microfiber adhesives with spatulate tips. Appl Phys Lett 91:221913

    Google Scholar 

  • Kim S, Sitti M, Jang J-H, Thomas EL (2008) Fabrication of bio-inspired elastomer nanofiber arrays with spatulate tips using notching effect. IEEE Nano 8:780–782

    Google Scholar 

  • Kosaki A, Yamaoka R (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Jpn J Appl Entomol Zool 40:47–53

    CAS  Google Scholar 

  • Kovalev AE, Varenberg M, Gorb SN (2012) Wet versus dry adhesion of biomimetic mushroom-shaped microstructures. Soft Matter 8:7560–7566

    CAS  Google Scholar 

  • Kovalev AE, Filippov AE, Gorb SN (2013) Insect wet steps: loss of fluid from insect feet adhering to a substrate. J R Soc Interface 10:20120639

    PubMed  PubMed Central  Google Scholar 

  • Kovalev AE, Filippov AE, Gorb SN (2018) Critical roughness in animal hairy adhesive pads: a numerical modeling approach. Bioinspir Biomim 13:066004

    PubMed  Google Scholar 

  • Landau LD, Lifshits EM (1981) Theory of elasticity, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly's seta. Proc R Soc Lond B 271:2209–2215

    Google Scholar 

  • Meikle RD (1978) A key to Commicarpus. Notes Roy Bot Gard Edinb 36:235–249

    Google Scholar 

  • Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol 21(12–13):1281–1296

    CAS  Google Scholar 

  • Niederegger S, Gorb SN (2003) Tarsal movements in flies during leg attachment and detachment on a smoothe substrate. J Insect Physiol 49:611–620

    CAS  PubMed  Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1232

    Google Scholar 

  • Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat Commun 4(1661):1–7

    Google Scholar 

  • Peressadko A, Gorb SN (2004) Surface profile and friction force generated by insects. In: Boblan I, Bannasch R (eds) Fortschritt-Berichte VDI 15, Nr. 249. VDI Verlag, Düsseldorf, pp 257–263

    Google Scholar 

  • Peressadko A, Hosoda N, Persson B (2005) Influence of surface roughness on adhesion between elastic bodies. Phys Rev Lett 95(12):124301

    CAS  PubMed  Google Scholar 

  • Persson B, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444

    CAS  Google Scholar 

  • Pitaevskii L, Lifshitz EM (1981) Physical kinetics. Pergamon Press, London

    Google Scholar 

  • Popov VL (2010) Contact mechanics and friction. Physical principles and applications. Springer, Berlin

    Google Scholar 

  • Popov VL, Starcevic J, Filippov AE (2007) Reconstruction of potential from dynamic experiments. Phys Rev E 75(6 Pt 2):066104

    CAS  Google Scholar 

  • Popov V, Filippov A, Gorb SN (2016) Biological microstructures with high adhesion and friction. Numerical approach. Physics-Uspekhi 59:829–845

    Google Scholar 

  • Russell A, Johnson M (2007) Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Can J Zool 85:1228–1238

    Google Scholar 

  • Sauer R, Holl M (2013) A detailed 3D finite element analysis of peeling behaviour of gecko spatula. Comput Methods Biomech Biomed Eng 16:577–591

    Google Scholar 

  • Schargott M, Popov V, Gorb SN (2006) Spring model of biological attachment pads. J Theor Biol 243:48–53

    CAS  PubMed  Google Scholar 

  • Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Springer, Berlin et al

    Google Scholar 

  • Schuppert J, Gorb SN (2006) The wet step: visualization of the liquid bridges in the attachment pads of the beetle Gastrophysa viridula. Comp Biochem Physiol A 143:97

    Google Scholar 

  • Spolenak R, Gorb SN, Gao H, Arzt E (2005) Effects of contact shape on the scaling of biological attachments. Proc R Soc A 461:305–319

    Google Scholar 

  • Stork NE (1980a) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae, Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Stork NE (1980b) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linnean Soc 68:173–306

    Google Scholar 

  • Stork NE (1983) The adherence of beetle tarsal setae to glass. J Nat Hist 17:583–597

    Google Scholar 

  • Stork NE (1986) The form of plant waxes: a means preventing insect attachment? In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. Edward Arnold, London, pp 346–347

    Google Scholar 

  • Struwig M, Siebert SJ (2013) A taxonomic revision of Commicarpus (Nyctaginaceae) in southern Africa. S Afr J Bot 84:44–64

    Google Scholar 

  • Struwig M, Jordaan A, Siebert SJ (2011a) Anatomical adaptations of Boerhavia L. and Commicarpus Standl. (Nyctaginaceae) for survival in arid environments of Namibia. Acta Biol Cracov Ser Bot 53(2):50–58

    Google Scholar 

  • Struwig M, Siebert SJ, Klaassen ES (2011b) Nyctaginaceae. Notes on Commicarpus Standl. in Southern Africa, including a new record for Namibia. Bothalia 41:289–292

    Google Scholar 

  • Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko attachment and detachment. Proc Natl Acad Sci U S A 103(51):19320–19325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanvinckenroye P, Cresens E, Ronse Decraene L-P, Smets E (1993) A comparative floral developmental study in Pisonia, Bougainvillea and Mirabilis (Nyctaginaceae) with special emphasis on the gynoecium and floral nectaries. Bull Jard Bot Natl Belg 62:69–96

    Google Scholar 

  • Varenberg M, Gorb SN (2008) Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J R Soc Interface 4:721–725

    Google Scholar 

  • Varenberg M, Pugno N, Gorb S (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–3272

    CAS  Google Scholar 

  • Voigt D, Schuppert J, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    CAS  PubMed  Google Scholar 

  • Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb SN, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613

    PubMed  Google Scholar 

  • Walker G, Yule AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool (Lond) 205:297–307

    Google Scholar 

  • Wolff J, Gorb SN (2012) Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). J Exp Biol 215:178–184

    Google Scholar 

  • Zhou Y, Robinson A, Steiner U, Federle W (2014) Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates. J R Soc Interface 11:20140499

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

4.1 Supplementary Electronic Material (S)

(MP4 366 kb)

(MP4 1565 kb)

(MP4 428 kb)

(MP4 606 kb)

(MP4 654 kb)

(MP4 634 kb)

(MP4 350 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippov, A.E., Gorb, S.N. (2020). Contact Between Biological Attachment Devices and Rough Surfaces. In: Combined Discrete and Continual Approaches in Biological Modelling . Biologically-Inspired Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-41528-0_4

Download citation

Publish with us

Policies and ethics