Skip to main content

Continuous Fluidized Bed Drying: Advanced Modeling and Experimental Investigations

  • Chapter
  • First Online:
Continuous Pharmaceutical Processing

Abstract

Fluidized bed drying is a technology which is widely applied in industry for the drying of particulate solids. One of the major advantages of fluidized bed system results from the fact that due to high heat, mass and momentum transfer, and intensive solids, mixing a good temperature control is possible, which allows an effective drying of heat-sensitive materials as, for example, food or pharmaceutical products, which are very often also porous and hygroscopic. A disadvantage of the nearly perfect solids mixing in the fluidized bed is the wide residence time distribution of the solids, that is, some particle will leave the dryer already a few seconds after they have been fed to it, while other particles stay for very long times inside the dryer, which may result in a wide moisture distribution of the solids at the outlet of the dryer.

Based on numerous works from the literature, a drying model for continuous fluidized bed drying has been developed and implemented as a module within the framework of the stationary flowsheet simulation program SolidSim, which allows the simulation of the drying process for many different solids, liquids, and gases.

In addition to the residence time distribution described by a population model, the influence of particle size distribution and the moisture distribution of the feed material was taken into account. The module computes the humidity and temperature of the gas versus the bed height and the moisture and temperature distribution of the solids by taking into account their distributed properties such as for the residence time distribution, particle size and initial moisture. Additionally, also the drying of mixtures of particles with different types of sorptive behavior and drying kinetics is possible while assuming that no particle segregation occurs. Furthermore, the model has been extended by a simple approach to simulate the drying in an elongated fluidized bed dryer.

For the validation of the model, the main operating parameters were varied and compared with experiments. The model can calculate the moisture distribution at the dryer outlet, but due to technical restriction, only the average moisture of the particles was measured and compared with the model prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Surface area

[m2]

c :

Specific heat capacity

[J/kg K]

c v :

Solids volume concentration

[−]

d :

Diameter

[m]

d v :

Bubble diameter

[m]

h :

Specific enthalpy

[J/kg]

Δhv:

Specific enthalpy of evaporation

[J/kg]

\( \overset{.}{H} \) :

Enthalpy flow rate

[J/s]

\( \overset{.}{m} \) :

Drying rate

[g/m2s]

M :

Mass

[kg]

\( \overset{.}{M} \) :

Mass flow rate

[kg/s]

\( \tilde{M} \) :

Molar mass

[kg/kmol]

N :

Number of density

[−]

\( \overset{.}{Q} \) :

Heat flow rate

[W]

ΔQ3,k:

Mass fraction of solids in particle class size k

[−]

ΔQ3,f:

Mass fraction of solids in moisture class size f

[−]

T :

Temperature

[K]

u :

Velocity

[m/s]

\( \overset{.}{V} \) :

Visible bubble flow rate based on unit bed area

[m/s]

X :

Particle moisture content (dry basis)

[kgw/kgs]

X eq :

Particle equilibrium moisture content (dry basis)

[kgw/kgs]

X cr :

Critical moisture content (dry basis)

[kgw/kgs]

Y :

Gas moisture content (dry basis)

[kgw/kgg]

Y eq :

Gas equilibrium moisture content

[kgw/kgg]

z :

Bed height coordinate

[m]

α :

Heat transfer coefficient

[W/m2]

α :

Crucial parameter

[−]

α w :

Water activity

[−]

β :

Mass transfer coefficient

[m/s]

ε :

Porosity

η :

Normalized particle moisture content

[−]

θ :

Factor Eq. (9.40)

ϑ :

Temperature

[°C]

λ :

The mean bubble life time

\( \overset{.}{\nu } \) :

Normalized single particle drying rate (dimensionless)

[−]

\( {\overset{.}{\nu}}^{\prime } \) :

Modified normalized single particle drying rate (dimensionless)

[−]

ξ :

Normalized bed height

[−]

ρ :

Density

[kg/m3]

τ :

Residence time

[s]

\( \overline{\tau} \) :

Mean residence time

[s]

υ :

Ratio of bubble to total gas flow rate

[−]

φ :

Relative humidity of the gas (dimensionless)

[−]

ψ :

Factor Eqs. (9.20) and (9.39)

b:

Bubble

cr:

Critical

f:

Index of discretized inlet moisture content coordinate

i:

Index of discretized residence time coordinate

k:

Index of discretized particle size coordinate

g:

Gas

mf:

Minimal fluidization

or:

Orifice

p:

Particle

s:

Suspension

v:

Vapor

CSTR:

Continuous stirred tank reactor

PFTR:

Plug flow tubular reactor

RTD:

Residence time distribution

References

  • Alaathar I, Hartge E-U, Heinrich S, Werther J. Modelling and flowsheet simulation of continuous fluidized bed dryers. Powder Technol. 2013;238:132–41.

    Article  CAS  Google Scholar 

  • Burgschweiger J, Tsotsas E. Experimental investigation and modelling of continuous fluidized bed drying under steady-state and dynamic conditions. Chem Eng Sci. 2002;57(24):5021–38.

    Article  CAS  Google Scholar 

  • Burgschweiger J, Groenewold H, Hirshmann C, Tsotsas E. From hygroscopic single particle to batch fluidized bed drying kinetics. Can J Chem Eng. 1999;77(2):333.

    Article  CAS  Google Scholar 

  • Chandran AN, Rao SS, Varma YBG. Fluidized bed drying of solids. AICHE J. 1990;36(1):29–38.

    Article  CAS  Google Scholar 

  • Cunäus U. Populationsdynamische Beschreibung der kontinuierlichen Wirbelschichttrocknung. Barleben: Docupoint-Verl; 2010.

    Google Scholar 

  • Cunäus U, Peglow M, Tsotsas E, Metzger T. Modelling of continuous fluidized bed drying using a population balance approach. In: The Ethan international drying symposium IDS 2008, Hyderabad, India. 2008.

    Google Scholar 

  • Cunäus U, Peglow M, Tsotsas E. Application of population balance equations for continuous fluidized bed drying. In: The 17th international drying symposium (IDS2010), Magdeburg, Germany. 2010.

    Google Scholar 

  • Davidson JF, Harrison D. Fluidized particles. New York: Cambridge University Press; 1963.

    Google Scholar 

  • Davies RM, Taylor G. The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc R Soc Lond A. 1950;200(1062):375–90.

    Article  Google Scholar 

  • Fyhr C, Kemp IC. Comparison of different drying kinetics models for single particles. Dry Technol. 1998a;16(7):1339–69.

    Article  CAS  Google Scholar 

  • Fyhr C, Kemp IC. Evaluation of the thin-layer method used for measuring single particle drying kinetics. Chem Eng Res Des. 1998b;76(7):815–22.

    Article  CAS  Google Scholar 

  • Garnavi L, Kasiri N, Hashemabadi SH. Mathematical modeling of a continuous fluidized bed dryer. Int Commun Heat Mass Transf. 2006;33(5):666–75.

    Article  CAS  Google Scholar 

  • Geldart D. Types of gas fluidization. Powder Technol. 1973;7(5):285–92.

    Article  CAS  Google Scholar 

  • Gnielinski V. Wärme- und Stoffübertragung in Festbetten. Chem Ing Tech. 1980;52(3):228–36.

    Article  CAS  Google Scholar 

  • Gnielinski L. Beitrag zum EInfluss der Gutsdicke auf den Trocknungsverlauf bei der Trocknung von porösen Stoffen. Doctoral thesis, University Magdeburg. 2009.

    Google Scholar 

  • Groenewold H. Wirbelschichttrocknung mit indirekter Beheizung. Doctoral thesis, University Magdeburg. 2005.

    Google Scholar 

  • Groenewold H, Tsotsas E. A new model of fluid bed drying. Dry Technol. 1997;15(6–8):1687–98.

    Article  CAS  Google Scholar 

  • Groenewold H, Tsotsas E. Predicting apparent Sherwood numbers for fluidized beds. Dry Technol. 1999;17(7–8):1557–70.

    Article  Google Scholar 

  • Groenewold C, Moser C, Groenewold H, Tsotsas E. Determination of single-particle drying kinetics in an acoustic levitator. Chem Eng J. 2002;86(1):217.

    Article  CAS  Google Scholar 

  • Hartge EU, Pogodda M, Reimers C, Schwier D, Gruhn G, Werther JG. SolidSim – a tool for the flowsheet simulation of solids processes. Aufbereitungs-Technik: AT = Processing Preparation. 2006a;(1/2):42–51.

    Google Scholar 

  • Hartge EU, Pogodda M, Reimers C, Schwier D, Gruhn G, Werther JG. Flowsheet simulation of solids processes. Kona Powder Part. 2006b;24:146–58.

    Article  CAS  Google Scholar 

  • Hilligardt K, Werther J. Local bubble gas hold-up and expansion of gas/solid fluidized beds. Ger Chem Eng. 1986;9:215–21.

    Google Scholar 

  • Hilligardt K, Werther J. Influence of temperature and properties of solids on the size and growth of bubbles in gas fluidized beds. Chem Eng Technol. 1987;10(1):272–80.

    Article  Google Scholar 

  • Hirschmann C, Tsotsas E. Impact of pore structure on particle-side drying kinetics. In: Drying ’98: proceedings of the 11th international drying symposium, Thessaloniki. 1998.

    Google Scholar 

  • Hirschmann C, Fyhr C, Tsotsas E, Kemp IC. Comparison of two basic methods for measuring drying curves: thin layer method and drying channel. In: Drying ’98: proceedings of the 11th international drying symposium, Thessaloniki. 1998.

    Google Scholar 

  • Kannan C, Thomas P, Varma Y. Drying of solids in fluidized beds. Ind Eng Chem Res. 1995;34(9):3068–78.

    Article  CAS  Google Scholar 

  • Kemp I, Fyhr BC, Laurent S, Roques M, Groenewold C, Tsotsas E, Sereno A, Bonazzi C, Bimbenet J-J, Kind M. Methods for processing experimental drying kinetics data. Dry Technol. 2001;19(1):15–34.

    Article  CAS  Google Scholar 

  • Kettner C, Peglow M, Metzger T, Tsotsas E. Distributed product quality in fluidized bed drying. In: 15th international drying symposium 2006, Budapest, Hungary. 2006.

    Google Scholar 

  • Kozanoglu B, Martinez J, Alvarez S, Guerrero-Beltrán JA, Welti-Chanes J. Influence of particle size on vacuum–fluidized bed drying. Dry Technol. 2011;30(2):138–45.

    Article  Google Scholar 

  • Kwapinski W, Tsotsas E. Characterization of particulate materials in respect to drying. Dry Technol. 2006;24(9):1083–92.

    Article  CAS  Google Scholar 

  • Martin H. Wärme- und Stoffübertragung in der Wirbelschicht. Chem Ing Tech. 1980;52(3):199–209.

    Article  CAS  Google Scholar 

  • Paláncz B. A mathematical model for continuous fluidized bed drying. Chem Eng Sci. 1983;38(7):1045–59.

    Article  Google Scholar 

  • Peglow M, Cunäus U, Kettner C, Metzger T, Tsotsas E. A population balance approach for continuous fluidized bed dryers. In: 6th European congress of chemical engineering (ECCE-6), Copenhagen. 2007.

    Google Scholar 

  • Peglow M, Metzger T, Lee G, Schiffter H, Hampel R, Heinrich S, Tsotsas E. Modern drying technology. In: Tsotsas E, Mujumdar AS, editors. Experimental techniques, vol. 2. Weinheim: Wiley-VCH; 2009.

    Google Scholar 

  • Peglow M, Cunaus U, Tsotsas E. An analytical solution of population balance equations for continuous fluidized bed drying. Chem Eng Sci. 2011;66(9):1916–22.

    Article  CAS  Google Scholar 

  • Richardson JF, Zaki WN. Sedimentation and fluidisation: part I. Chem Eng Res Des. 1954;75:S82–S100.

    Article  Google Scholar 

  • Suherman. Drying kinetics of granular and powdery polymers. Magdeburg: Docupoint-Verl; 2007.

    Google Scholar 

  • Toomey RD, Johnstone HF. Gaseous fluidization of solid particles. Chem Eng Prog. 1952;48:220–6.

    CAS  Google Scholar 

  • Tsotsas E, Mujumdar AS. Modern drying technology. Volume 2. Experimental techniques. Wiley-VCH Verlag GmbH & Co. KGaA. 2009.

    Google Scholar 

  • van Meel DA. Adiabatic convection batch drying with recirculation of air. Chem Eng Sci. 1958;9(1):36–44.

    Article  Google Scholar 

  • Vanecek V, Markvart M. Fluidized bed drying. London: Leonard Hill; 1966.

    Google Scholar 

  • Werther J, Wein J. Expansion behavior of gas fluidized beds in the turbulent regime. AIChe Symp Ser. 1994;90(301):31–44.

    Google Scholar 

  • Zahed AH, Zhu JX, Grace JR. Modelling and simulation of batch and continuous fluidized bed dryers. Dry Technol. 1995;13(1–2):1–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heinrich .

Editor information

Editors and Affiliations

Appendix A

Appendix A

9.1.1 A.1 Mass and Heat Transfer Between Particles and Suspension Gas

Mass and heat transfer between particles and suspension gas after Gnielinski (1980) for fixed bed

\( \operatorname{Re}=\frac{{\operatorname{Re}}_{\mathrm{mf}}}{\varepsilon_{\mathrm{mf}}} \)

\( \operatorname{Re}=\frac{{\operatorname{Re}}_{\mathrm{mf}}}{\varepsilon_{\mathrm{mf}}} \)

\( \mathrm{Sc}=\frac{\nu_{\mathrm{g}}}{\delta_{\mathrm{w},\mathrm{g}}} \)

\( \Pr =\frac{\nu_{\mathrm{g}}{c}_{\mathrm{g}}{\rho}_{\mathrm{g}}}{\lambda_{\mathrm{g}}} \)

\( {\mathrm{Sh}}_{\mathrm{lam}}=0.664{\operatorname{Re}}^{\frac{1}{2}}{\mathrm{Sc}}^{\frac{1}{3}} \)

\( {\mathrm{Nu}}_{\mathrm{lam}}=0.664{\operatorname{Re}}^{\frac{1}{2}}{\Pr}^{\frac{1}{3}} \)

\( {\mathrm{Sh}}_{\mathrm{tur}}=\frac{0.037{\operatorname{Re}}^{0.8}\mathrm{Sc}}{1+2.443{\operatorname{Re}}^{-0.1}\left({\mathrm{Sc}}^{\frac{2}{3}}-1\right)} \)

\( {\mathrm{Nu}}_{\mathrm{tur}}=\frac{0.037{\operatorname{Re}}^{0.8}\Pr }{1+2.443{\operatorname{Re}}^{-0.1}\left({\Pr}^{\frac{2}{3}}-1\right)} \)

\( {\mathrm{Sh}}_{\mathrm{p}}=2+\sqrt{{\mathrm{Sh}}_{\mathrm{lam}}^2+{\mathrm{Sh}}_{\mathrm{tur}}^2} \)

\( {\mathrm{Nu}}_{\mathrm{p}}=2+\sqrt{{\mathrm{Nu}}_{\mathrm{lam}}^2+{\mathrm{Nu}}_{\mathrm{tur}}^2} \)

Shps = [1 + 1.5(1 − εmf)]Shp

Nups = [1 + 1.5(1 − εmf)]Nup

Back-mixing effect after Groenewold and Tsotsas (1999)

\( {\mathrm{Sh}}_{\mathrm{ps}}^{\prime }=\frac{{\operatorname{Re}}_0\mathrm{Sc}}{A/F}\ln \left(1+\frac{{\mathrm{Sh}}_{\mathrm{ps}}A/F}{{\operatorname{Re}}_0\mathrm{Sc}}\right) \)

\( {\mathrm{Nu}}_{\mathrm{ps}}^{\prime }=\frac{{\operatorname{Re}}_0\Pr }{A/F}\ln \left(1+\frac{{\mathrm{Nu}}_{\mathrm{ps}}A/F}{{\operatorname{Re}}_0\Pr}\right) \)

\( {\mathrm{Sh}}_{\mathrm{p}\mathrm{s}}^{\prime }=\frac{\beta_{\mathrm{p}\mathrm{s}}{d}_{\mathrm{p}}}{\delta } \)

\( {\mathrm{Nu}}_{\mathrm{p}\mathrm{s}}^{\prime }=\frac{\alpha_{\mathrm{p}\mathrm{s}}{d}_{\mathrm{p}}}{\lambda_{\mathrm{g}}} \)

where Re Reynolds number, Sc Schmidt number, εmf minimal fluidization velocity, and Pr Prandtl number.

9.1.2 A.2 Mass and Heat Transfer Between Suspension Gas and Bubble Phase

The Number of Transfer Unit (NTU) is given as

$$ {\mathrm{NTU}}_{\mathrm{sb}}=\frac{\rho_{\mathrm{g}}\cdot {\beta}_{\mathrm{sb}}{A}_{\mathrm{sb}}}{{\overset{.}{M}}_{\mathrm{g}}} $$

It is assumed that NTU increases linearly with the height; for a bed height of 5 cm, a value of 1 was set (Groenewold and Tsotsas 1999); therefore

$$ {\mathrm{NTU}}_{\mathrm{sb}}={\mathrm{NTU}}_{\mathrm{sb}}^0\cdot \frac{L_{\mathrm{bed}}}{50\; mm} $$
$$ \frac{\alpha_{\mathrm{sb}}{A}_{\mathrm{sb}}}{c_{\mathrm{g}}{\overset{.}{M}}_{\mathrm{g}}}=\frac{\rho_{\mathrm{g}}{\beta}_{\mathrm{sb}}{A}_{\mathrm{sb}}}{{\overset{.}{M}}_{\mathrm{g}}}{\mathrm{Le}}^{1-m} $$
$$ \mathrm{Le}=\frac{\lambda_{\mathrm{g}}}{c_{\mathrm{g}}{\rho}_{\mathrm{g}}{\delta}_{\mathrm{g}}} $$
$$ m=\frac{1}{3} $$

9.1.3 A.3 Heat Transfer Between the Particles and the Wall

The heat transfer coefficient between the particles and the wall is calculated after (Martin 1980).

$$ {\mathrm{Nu}}_{\mathrm{p}\mathrm{w}}=\frac{\alpha_{\mathrm{p}\mathrm{w}}{d}_{\mathrm{p}}}{\lambda_{\mathrm{g}}} $$
$$ {\mathrm{Nu}}_{\mathrm{pw}}=\left(1-\varepsilon \right)Z\left(1-{e}^{-N}\right) $$

With the coefficients

$$ Z=\frac{1}{6}\frac{\rho_{\mathrm{p}}{c}_{\mathrm{p},\mathrm{wet}}}{\lambda_{\mathrm{g}}}\sqrt{\frac{g{d}_{\mathrm{p}}^3\left(\varepsilon -{\varepsilon}_{\mathrm{mf}}\right)}{5\left(1-{\varepsilon}_{\mathrm{mf}}\right)\left(1-\varepsilon \right)}} $$
$$ N=\frac{{\mathrm{Nu}}_{\mathrm{pw}\left(\max \right)}}{C_{\mathrm{K}}Z} $$
$$ {C}_{\mathrm{K}}=2.6 $$

The maximal Nusselt number can be calculated from

$$ {\mathrm{Nu}}_{\mathrm{p}\mathrm{w}\left(\max \right)}=4\left\{\left(1+\frac{2l}{d_{\mathrm{p}}}\right)\ln \left(1+\frac{d_{\mathrm{p}}}{2l}\right)-1\right\} $$

with

$$ l=2\left(\frac{2}{\gamma }-1\right)\sqrt{\frac{2\pi \tilde{R}T}{{\tilde{M}}_{\mathrm{g}}}}\frac{\lambda_{\mathrm{g}}}{p\left(2{c}_{\mathrm{g}}-\tilde{R}/{\tilde{M}}_{\mathrm{g}}\right)} $$
$$ \lg \left(\frac{1}{\gamma }-1\right)=0.6-\frac{\frac{1000\;K}{T_{\mathrm{g}}}+1}{C_{\mathrm{A}}} $$
$$ {C}_{\mathrm{A}}=2.8 $$

where l is the modified free path of the gas molecules.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alaathar, I., Heinrich, S., Hartge, EU. (2020). Continuous Fluidized Bed Drying: Advanced Modeling and Experimental Investigations. In: Nagy, Z., El Hagrasy, A., Litster, J. (eds) Continuous Pharmaceutical Processing. AAPS Advances in the Pharmaceutical Sciences Series, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-41524-2_9

Download citation

Publish with us

Policies and ethics