Type-Theory of Acyclic Algorithms for Models of Consecutive Binding of Functional Neuro-Receptors

Part of the Studies in Computational Intelligence book series (SCI, volume 889)


In this chapter, we provide a technical introduction to the new Type-Theory of Acyclic Recursion (TTAR). The formal language and theory of TTAR is a specialised part of a new approach to theory of algorithms. We introduce the formal syntax of TTAR, its reduction calculi, and two kinds of semantics: denotational and algorithmic. The algorithmic computations formalized by TTAR employ specialised operators that are the major computational utilities for potential theoretical and practical applications of TTAR. We present functional binding of arguments slots, by combinations of recursion and abstraction operators, at the object level of TTAR. We consider that such interconnections are models of basic, natural facilities of neural memory and functionality.


  1. 1.
    Gallin, D.: Intensional and Higher-Order Modal Logic: With Applications to Montague Semantics. North-Holland Publishing Company, Amsterdam and Oxford, and American Elsevier Publishing Company (1975). Scholar
  2. 2.
    Hurkens, A.J.C., McArthur, M., Moschovakis, Y.N., Moss, L.S., Whitney, G.T.: The logic of recursive equations. J. Symb. Log. 63(2), 451–478 (1998). Scholar
  3. 3.
    Kandel, E., Jessell, T., Siegelbaum, S., Schwartz, J., Hudspeth, A.J. (eds.): Principles of neural science. McGraw-Hill, Health Professions Division (2000)Google Scholar
  4. 4.
    van Lambalgen, M., Hamm, F.: The Proper Treatment of Events. Explorations in Semantics. Wiley-Blackwell, Oxford (2005)Google Scholar
  5. 5.
    Loukanova, R.: Modeling context information for computational semantics with the language of acyclic recursion. In: Pérez, J.B., Corchado, J.M., Moreno, M., Julián, V., Mathieu, P., Canada-Bago, J., Ortega, A., Fernández-Caballero, A. (eds.) Highlights in Practical Applications of Agents and Multiagent Systems. Advances in Intelligent and Soft Computing, vol. 89, pp. 265–274. Springer, Berlin (2011). Scholar
  6. 6.
    Loukanova, R.: Reference, co-reference and antecedent-anaphora in the type theory of acyclic recursion. In: Bel-Enguix, G., Jiménez-López, M.D. (eds.) Bio-Inspired Models for Natural and Formal Languages, pp. 81–102. Cambridge Scholars Publishing, Newcastle upon Tyne (2011)Google Scholar
  7. 7.
    Loukanova, R.: Semantics with the language of acyclic recursion in constraint-based grammar. In: Bel-Enguix, G., Jiménez-López, M.D. (eds.) Bio-Inspired Models for Natural and Formal Languages, pp. 103–134. Cambridge Scholars Publishing, Newcastle upon Tyne (2011)Google Scholar
  8. 8.
    Loukanova, R.: Syntax-semantics interface for lexical inflection with the language of acyclic recursion. In: Bel-Enguix, G., Dahl, V., Jiménez-López, M.D. (eds.) Biology, Computation and Linguistics—New Interdisciplinary Paradigms. Frontiers in Artificial Intelligence and Applications, vol. 228, pp. 215–236. IOS Press, Amsterdam (2011).
  9. 9.
    Loukanova, R.: Algorithmic semantics of ambiguous modifiers by the type theory of acyclic recursion. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 3, pp. 117–121. IEEE Computer Society, Los Alamitos (2012).
  10. 10.
    Loukanova, R.: Semantic Information with Type Theory of Acyclic Recursion. In: R. Huang, A.A. Ghorbani, G. Pasi, T. Yamaguchi, N.Y. Yen, B. Jin (eds.) Active Media Technology - 8th International Conference, AMT 2012, Macau, China, December 4-7, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7669, pp. 387–398. Springer (2012). URL Scholar
  11. 11.
    Loukanova, R.: Algorithmic granularity with constraints. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) Brain and Health Informatics. Lecture Notes in Computer Science, vol. 8211, pp. 399–408. Springer International Publishing, Berlin (2013). Scholar
  12. 12.
    Loukanova, R.: Algorithmic semantics for processing pronominal verbal phrases. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H., (eds.) Flexible Query Answering Systems. Lecture Notes in Computer Science, vol. 8132, pp. 164–175. Springer, Berlin (2013). Scholar
  13. 13.
    Loukanova, R.: A Predicative operator and underspecification by the type theory of acyclic recursion. In: Duchier, D., Parmentier, Y. (eds.) Constraint Solving and Language Processing. Lecture Notes in Computer Science, vol. 8114, pp. 108–132. Springer, Berlin (2013). Scholar
  14. 14.
    Loukanova, R.: Relationships between specified and underspecified quantification by the theory of acyclic recursion. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 5(4), 19–42 (2016). Scholar
  15. 15.
    Loukanova, R.: Computational syntax-semantics interface with type-theory of acyclic recursion for underspecified semantics. In: Osswald, R., Retoré, C., Sutton, P. (eds.) In: Proceedings of the Workshop IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pp. 37–48. The Association for Computational Linguistics (ACL) (2019).
  16. 16.
    Loukanova, R.: Gamma-Reduction in Type Theory of Acyclic Recursion. Fundam. Inform. 170(4), 367–411 (2019). Scholar
  17. 17.
    Loukanova, R.: Gamma-star canonical forms in the type-theory of acyclic algorithms. In: van den Herik, J., Rocha, A.P. (eds.) Agents and Artificial Intelligence, pp. 383–407. Springer International Publishing, Cham (2019). Scholar
  18. 18.
    Moschovakis, Y.N.: The formal language of recursion. J. Symb. Log.54(04), 1216–1252 (1989). Scholar
  19. 19.
    Moschovakis, Y.N.: Sense and denotation as algorithm and value. In: Oikkonen, J., Väänänen J. (eds.) Logic Colloquium ’90: ASL Summer Meeting in Helsinki. Lecture Notes in Logic, vol. 2, pp. 210–249. Springer, Berlin (1993).
  20. 20.
    Moschovakis, Y.N.: The logic of functional recursion. In: Dalla Chiara, M.L., Doets, K., Mundici, D., van Benthem, J. (eds.) Logic and Scientific Methods, vol. 259, pp. 179–207. Springer, Dordrecht (1997). Scholar
  21. 21.
    Moschovakis, Y.N.: A logical calculus of meaning and synonymy. Linguist. Philos. 29(1), 27–89 (2006). Scholar
  22. 22.
    Moschovakis, Y.N.: Abstract recursion and intrinsic complexity. Lecture Notes in Logic, vol. 45. Cambridge University Press, Cambridge (2019)Google Scholar
  23. 23.
    Squire, L., Kandel, E.: Memory: From Mind to Molecules. Roberts & Co. (2009)Google Scholar
  24. 24.
    Thomason, R.H. (ed.).: Formal Philosophy: Selected Papers of Richard Montague. Yale University Press, New Haven (1974)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsStockholm UniversityStockholmSweden
  2. 2.Institute of Mathematics and Informatics, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations