Advertisement

Pulses pp 145-168 | Cite as

Lima Bean

  • M. Sandoval-Peraza
  • G. Peraza-Mercado
  • D. Betancur-Ancona
  • A. Castellanos-Ruelas
  • L. Chel-Guerrero
Chapter
  • 54 Downloads

Abstract

According to the taxonomy, the bean belongs to the genus Phaseolus, which includes approximately 35 species of which 4 are cultivated: P. vulgaris L.; P. lunatus L.; P. coccineus L., and P. acutifolius L. (Arias-Restrepo et al. 2007). Phaseolus lunatus L. belongs to the Fabaceae family, and there are two domesticated genetic stocks from two different wild forms with two seed morphologies, small and large (Debouk 2019). The small seeds are known as ib., patashete and futuna (Yucatan, Chiapas, and Jalapa, Mexico, respectively), caballero bean (Cuba), ixtapacal (Guatemala), chilipuca (El Salvador), haba (Puerto Rico and Panama), sieva and comba (Colombia), and guaracaro (Venezuela), among others. The large seeds are known as lima, layo and pallar (Peru), torta (Colombia), palato (Bolivia), and manteotto (Argentina) (Debouk 2019).

Keywords

Functional food products Postharvest processing Lima bean protein concentrate Pepsin-pancreatin hydrolysate Proximate and amino acid composition ACE inhibition Antioxidant activity Hydrolysate microencapsulated Residual bioactivity of microencapsulated 

References

  1. Arias-Restrepo, J., Rengifo-Martínez, T., Jaramillo-Carmona, M. (2007). Manual Técnico, Buenas prácticas agrícolas (BPA) en la producción de frijol voluble (1st ed.). Medellin: FAO. ISBN 978-92-5-305827-3. Retrieved May 15, 2019, from http://www.fao.org/3/a-a1359s.pdf
  2. Arias-Trinidad, A. (2018). Evaluacion de la goma nativa de Guazuma ulmifolia, en la encapsulación de fracciones peptídicas con actividad antioxidantes de Phaseolus lunatus. PhD Thesis. Autonomous University of Yucatan, Merida, Yucatan, Mexico.Google Scholar
  3. Betancur-Ancona, D., Chel-Guerrero, L., Camelo-Matos, R., & Dávila-Ortiz, G. (2001). Physicochemical and functional characterization of baby lima bean (Phaseolus lunatus) starch. Starch/Stärke, 53, 219–226.  https://doi.org/10.1002/1521-379X(200105)53:5<219::AID-STAR219>3.0.CO;2-R.CrossRefGoogle Scholar
  4. Betancur-Ancona, D., López-Luna, J., & Chel-Guerrero, L. (2003). Comparison of the chemical composition and functional properties of Phaseolus lunatus prime and tailing starches. Food Chemistry, 82, 217–225.  https://doi.org/10.1016/S0308-8146(02)00515-0.CrossRefGoogle Scholar
  5. Betancur-Ancona, D., Gallegos-Tintoré, S., & Chel-Guerrero, L. (2004a). Wet-fraction of Phaseolus lunatus seeds: Partial characterization of starch and protein. Journal of the Science of Food and Agriculture, 84, 1193–1201.  https://doi.org/10.1002/jsfa.1804.CrossRefGoogle Scholar
  6. Betancur-Ancona, D., Peraza-Mercado, G., Moguel-Ordoñez, Y., & Fuertes-Blanco, S. (2004b). Physicochemical characterization of lima bean (Phaseolus lunatus) and jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry, 84, 287–295.  https://doi.org/10.1016/S0308-8146(03)00213-9.CrossRefGoogle Scholar
  7. Betancur-Ancona, D., Martínez-Rosado, R., Corona-Cruz, A., Castellanos-Ruelas, A., Jaramillo-Flores, E., & Chel-Guerrero, L. (2009). Functional properties of hydrolysates from Phaseolus lunatus seeds. Journal of Food Science and Technology, 44, 128–137.  https://doi.org/10.1111/j.1365-2621.2007.01690.x.CrossRefGoogle Scholar
  8. Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science and Technology, 31, 118–129.  https://doi.org/10.1016/j.tifs.2013.03.006.CrossRefGoogle Scholar
  9. BIMBO. (2019). Pan doble fibra. Retrieved May 17, 2019, from https://www.bimbo.com.mx/es/productos-pan/doble-fibra?product_category=16817
  10. Bojorquez-Balam, E., Ruiz-Ruiz, J., Segura-Campos, M., Betancur-Ancona, D., & Chel-Guerrero, L. (2013). Evaluacion de la capacidad antimicrobiana de fracciones peptídicas de hidrolizados proteínicos de frijol lima (Phaseolus lunatus). In Bioactividad de péptidos derivados de proteínas alimentarias (pp. 139–154). Mexico: Lilu Enterprises.CrossRefGoogle Scholar
  11. Campechano-Carrera, E., Corona-Cruz, A., Chel-Guerrero, L., & Betancur-Ancona, D. (2007). Effect of pyrodextrinization on available starch content of lima bean (Phaseolus lunatus) and cowpea (Vigna unguiculata) starches. Food Hydrocolloids, 21, 472–479.  https://doi.org/10.1016/j.foodhyd.2006.06.006.CrossRefGoogle Scholar
  12. Chavan, U., McKenzie, D., & Shahidi, F. (2001). Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chemistry, 74, 177–187.  https://doi.org/10.1016/S0308-8146(01)00123-6.CrossRefGoogle Scholar
  13. Chécate, Mídete, & Muévete. (2019). (Check yourself, measure yourself and move). Retrieved May 17, 2019, from http://checatemidetemuevete.gob.mx/
  14. Chel-Guerrero, L., Pérez-Flores, V., Betancur-Ancona, D., & Dávila-Ortiz, G. (2002). Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds. Journal of Agricultural and Food Chemistry, 50, 584–591.  https://doi.org/10.1021/jf010778j.CrossRefPubMedGoogle Scholar
  15. Chel-Guerrero, L., Gallegos-Tintoré, S., Martínez-Ayala, A., Castellanos-Ruelas, A., & Betancur-Ancona, D. (2011). Functional properties of proteins from lima bean (Phaseolus lunatus L.) seeds. Food Science and Technology International, 17(2), 119–126.  https://doi.org/10.1177/1082013210381433.CrossRefPubMedGoogle Scholar
  16. Chel-Guerrero, L., Domínguez-Magaña, M., Martínez-Ayala, A., Dávila-Ortiz, G., & Betancur-Ancona, D. (2012). Lima bean (Phaseolus lunatus) protein hydrolysates with ACE-I inhibitory activity. Food and Nutrition Sciences, 3, 511–521.  https://doi.org/10.4236/fns.2012.34072.CrossRefGoogle Scholar
  17. Chim-Rodríguez, A. (2000). Incorporación de almidones primarios y secundarios de Canavalia ensiformis L. y Phaseolus lunatus L. en galletas. Bachelor Thesis, Autonomous University of Yucatan, Merida, Yucatan, Mexico.Google Scholar
  18. Cho, M., Unklesbay, N., Hsieh, F., & Clarke, A. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry, 52(19), 5895–5901.  https://doi.org/10.1021/jf0495035.CrossRefPubMedGoogle Scholar
  19. Ciau-Solís, N., Acevedo-Fernández, J., & Betancur-Ancona, D. (2017). In vitro renin—Angiotensin system inhibition and in vivo antihypertensive activity of peptide fractions from lima bean (Phaseolus lunatus L.). Journal of the Science of Food and Agriculture, 98, 781–786.  https://doi.org/10.1002/jsfa.8543.CrossRefPubMedGoogle Scholar
  20. Córdova-Lizama, A., Ruiz-Ruiz, J., Segura-Campos, M., Betancur-Ancona, D., & Chel-Guerrero, L. (2013). Actividad antitrombótica y anticariogénica de hidrolizados proteínicos de frijol lima (Phaseolus lunatus). In Bioactividad de péptidos derivados de proteínas alimentarias (pp. 123–137). Mexico: Lilu Enterprises.CrossRefGoogle Scholar
  21. Córdova-Villalobos, J., Barriguete-Meléndez, J., Lara-Esqueda, A., Barquera, S., Rosas-Peralta, M., Hernández-Ávila, M., León-May, M., & Aguilar-Salinas, C. (2008). Las enfermedades crónicas no transmisibles en México: sinopsis epidemiológica y prevención integral. Salud Pública de México, 50(5):419–427. Retrieved May 20, 2019, from http://www.scielo.org.mx/pdf/spm/v50n5/a15v50n5.pdf
  22. Cortés, G., Prieto, G., & Rozo, W. (2015). Bromatological and physicochemical characterization of Physalis peruviana L., and its potential as a nutraceutic food. Revista Ciencia en Desarrollo, 6(1):87–97. Retrieved May 20, 2019, from http://www.scielo.org.co/pdf/cide/v6n1/v6n1a11.pdf
  23. Crowe, K. M., & Francis, C. (2013). Position of the academy of nutrition and dietetics: Functional foods. Journal of the Academy of Nutrition and Dietetics, 113(8), 1096–1103.  https://doi.org/10.1016/j.jand.2013.06.002.CrossRefPubMedGoogle Scholar
  24. Cuny, M., La Forgia, D., Desurmont, G., Glauser, G., & Benrey, B. (2019). Role of cyanogenic glycosides in the seeds of wild lima bean, Phaseolus lunatus: Defense, plant nutrition or both? Planta, 250, 1281–1292.  https://doi.org/10.1007/s00425-019-03221-3.CrossRefPubMedGoogle Scholar
  25. Davalos-Cervera, J. (2003). Elaboración de salchichas tipo Frakfurt adicionadas con concentrado de proteína de Phaseolus lunatus. Thesis, Autonomous University of Yucatan, Merida, Yucatan, Mexico.Google Scholar
  26. Dávila-Torres, J., González-Izquierdo, J., Barrera-Cruz, A. (2015). Panorama de la obesidad en México. Revista medica del Instituto Mexicano del Seguro Social, 3(2):240–249. Retrieved May 15, 2019, from http://revistamedica.imss.gob.mx/editorial/index.php/revista_medica/article/viewFile/21/54
  27. De Dios, A., Porrilla, Y., & Chaparro, D. (2009). Antinutritional factors in eatable seeds. Facultad de Ciencias Agropecuarias, 7(1), 45–54.Google Scholar
  28. Debouk, D. G. (2019). La agricultura en Mesoamerica. Frijoles (Phaseolus spp.). In Cultivos Andinos FAO. Retrieved May 20, 2019, http://www.fao.org/tempref/GI/Reserved/FTP_FaoRlc/old/prior/segalim/prodalim/prodveg/cdrom/contenido/libro09/Cap2_2.htm#auto
  29. Domínguez-Magaña, M. (2009). Aislamiento de biopeptidos con actividad inhibitoria de la enzima convertidora de angiotensina-I a partir de hidrolizados de P. lunatus. PhD Thesis, Autonomous University of Yucatan, Merida, Yucatan, Mexico.Google Scholar
  30. Domínguez-Magaña, M., Segura-Campos, M., Dávila-Ortiz, G., Betancur-Ancona, D., & Chel-Guerrero, L. (2015) ACE-I inhibitory properties of hydrolysates from germinated and ungerminated Phaseolus lunatus proteins. Food Science and Technology (Campinas).  https://doi.org/10.1590/1678-457X.6551CrossRefGoogle Scholar
  31. ENSANUT. (2012). Resultados Nacionales. Retrieved May 10, 2019, from https://ensanut.insp.mx/informes/ENSANUT2012ResultadosNacionales.pdf
  32. FAO. (2011). Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. FAO Food and Nutrition Paper 92. ISSN 0254-4725. Retrieved May 20, 2019, from https://apps.who.int/iris/bitstream/handle/10665/41042/WHO_TRS_522_eng.pdf?sequence=1&isAllowed=y
  33. FAO. (2018). Nuestras legumbres. Pequeñas semillas, grandes soluciones. FAO, Ciudad de Panamá. ISBN 978-92-5-131129-5. Retrieved May 20, 2019, from http://www.fao.org/3/ca2597es/CA2597ES.pdf
  34. FAO. (2020). Cultivos Andinos. Cultivos Autoctonos Subexplotados de Mesoamerica. Retrieved Apr 03, 2020, from http://www.fao.org/tempref/GI/Reserved/FTP_FaoRlc/old/prior/segalim/prodalim/prodveg/cdrom/contenido/libro11/home11.htm
  35. Franco-Miranda, H. (2015). Incorporacion de hidrolizados proteicos de Phaseolus lunatus y Vigna unguiculata en productos de panaderia y extrudidos. Master’s Thesis, Autonomous University of Yucatan, Merida, Yucatan, Mexico.Google Scholar
  36. Franco-Miranda, H., Chel-Guerrero, L., Gallegos-Tintoré, S., Castellanos-Ruelas, A., & Betancur-Ancona, D. (2017). Physicochemical, rheological, bioactive and consumer acceptance analyses of concha-type Mexican sweet bread containing lima bean or cowpea hydrolysates. Food Science and Technology, 80, 250–256.  https://doi.org/10.1016/j.lwt.2017.02.034.CrossRefGoogle Scholar
  37. Giami, S. (2001). Quality attributes of three new improved lines of Nigerian lima beans (Phaseolus lunatus L. Walp.). Plant Food for Human Nutrition, 56:325–333. Retrieved May 20, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/11678438
  38. Gómez, R., Monteiro, H., Cossio-Bolaños, A., Fama-Cortez, D., & Zanesco, A. (2010). Physical exercise and its prescription in patients with chronic degenerative diseases. Revista Peruana de Medicina Experimental y Salud Pública, 27(3):379–386. Retrieved May 20, 2019, from http://www.scielo.org.pe/pdf/rins/v27n3/a11v27n3.pdf
  39. Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: From research to food applications. Current Opinion in Biotechnology, 18, 163–169.  https://doi.org/10.1016/j.copbio.2007.01.013.CrossRefPubMedGoogle Scholar
  40. LALA. (2019). Leche LALA fibra semideslactosada. Retrieved May 25, 2019, from https://www.lala.com.mx/producto/lala-fibra-semi/
  41. Linnemann, A., & Dijkstra, D. (2002). Toward sustainable production of protein-rich foods: Appraisal of eight crops for Western Europe. Part I. Analysis of the primary links of the production chain. Critical Reviews in Food Science and Nutrition, 42(2), 377–401.  https://doi.org/10.1080/20024091054193.CrossRefPubMedGoogle Scholar
  42. López-Alcocer, J., Lépiz-Idelfonso, R., González-Eguiarte, D., Rodríguez-Macías, R., Lípez-Alcocer, E. (2016). Morphological variability of wild Phaseolus lunatus L. from the western region of Mexico. Revista Fitotecnia Mexicana, 39(1):49–58. Retrieved May 20, 2019 from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802016000100009
  43. Miranda-Villa, P., Marrugo-Ligardo, Y., & Montero-Castillo, P. (2013). Functional characterization of bean Zaragoza starch (Phaseolus lunatus L.) and quantification of the resistant starch. TecnoLógicas, 30, 17–32.CrossRefGoogle Scholar
  44. Monge, A. (2008). Functional foods. Reflexions of a scientist regarding a market in expansion. Revista de la Sociedad Quimica del Peru, 74(2):138–147. Retrieved May 20, 2019, from http://www.scielo.org.pe/pdf/rsqp/v74n2/a06v74n2.pdf
  45. Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806–1815.  https://doi.org/10.1016/j.profoo.2011.09.266.CrossRefGoogle Scholar
  46. NMX-FF-038-SCFI-2002. (n.d.) Productos alimenticios no industrializados para consumo humano, fabáceas, frijol (Phaseolus vulgaris) especificaciones y métodos de prueba. México: Secretaría de Economía. Retrieved May 20, 2019, from http://www.sagarpa.gob.mx/agronegocios/Lists/Instrumentos%20Tcnicos%20Normalizacin%20y%20Marcas%20Colecti/Attachments/91/NMX_FRIJOL.pdf
  47. Novelo-Cen, L., Betancur-Ancona, D. (2005). Chemical and Functional Properties of Phaseolus lunatus and Manihot esculenta Starch Blends. Starch - Stärke 57(9):431–441.CrossRefGoogle Scholar
  48. Nuñez-Aragón, P., Segura-Campos, M., Negrete-León, E., Acevedo-Fernández, J., Betancur-Ancona, D., Chel-Guerrero, L., & Castañeda-Corral, G. (2019). Protein hydrolysates and ultrafiltered <1 kDa fractions from Phaseolus lunatus, Phaseolus vulgaris and Mucuna pruriens exhibit antihyperglycemic activity, intestinal glucose absorption and α-glucosidase inhibition with no acute toxicity in rodents. Journal of the Science of Food and Agriculture, 99, 587–595.  https://doi.org/10.1002/jsfa.9219.CrossRefPubMedGoogle Scholar
  49. PAHO. (2002). Health in the Americas (PAHO Scientific and Technical Publication No. 587) (2002 ed). Washington, DC. ISBN 92-75-31587-6. Retrieved May 20, 2019, from http://iris.paho.org/xmlui/bitstream/handle/123456789/746/9275115877_vol_I_EN.pdf;jsessionid=D16467E7BD31C373D43D17080617375E?sequence=7.
  50. Pastor-Cavada, E., Juan, R., Alaiz, M., & Vioque, J. (2011). Nutritional characteristics of seed proteins in 28 Vicia species (Fabaceae) from southern Spain. Journal of Food Science, 76(8), C1118–C1124.  https://doi.org/10.1111/j.1750-3841.2011.02336.x.CrossRefPubMedGoogle Scholar
  51. Peraza-Mercado, G. (2000) Caracterización de los residuos fibrosos de Canavalia ensiformis L. y Phaseolus lunatus L. y su incorporación a un producto alimenticio. Master’s Thesis. Autonomous University of Yucatan. Merida, Yucatan, Mexico.Google Scholar
  52. Pérez-Navarrete, C., Cruz-Estrada, R., Chel-Guerrero, L., & Betancur-Ancona, D. (2006). Physical characterization of extrudates prepared with blends of QPM maize (Zea maiz L.) and lima bean (Phaseolus lunatus L.). Revista de Ingenieria Quimica, 5, 145–155.Google Scholar
  53. Polanco-Lugo, E., Dávila-Ortiz, G., Betancur-Ancona, D., & Chel-Guerrero, L. (2014). Effects of sequential enzymatic hydrolysis on structural, bioactive and functional properties of Phaseolus lunatus protein isolate. Food Sci. Technol (Campinas), 34(3), 441–448.  https://doi.org/10.1590/1678-457x.6349.CrossRefGoogle Scholar
  54. Ruiz-Ruiz, J., Segura-Campos, M., Betancur-Ancona, D. A., Chel-Guerrero, L. (2013). Encapsulation of Phaseolus lunatus protein hydrolysate with angiotensin-converting enzyme inhibitory activity. ISRN Biotechnology, 2013: 1–6.  https://doi.org/10.5402/2013/341974. Retrieved May 20, 2019, from http://www.hindawi.com/isrn/biotechnology/2013/341974/CrossRefGoogle Scholar
  55. Sandoval-Peraza, V. (2015). Microencapsulacion de hidrolizados proteicos de Phaseolus lunatus L. con gomas de flamboyán (Delonix regia bojer Raf.) y chia (Salvia hispánica). PhD Thesis. Autonomous University of Yucatan. Merida, Yucatan, Mexico.Google Scholar
  56. Sandoval-Peraza, M., Betancur-Ancona, D., Gallegos-Tintoré, S., & Chel-Guerrero, L. (2014). Evaluation of some residual bioactivities of microencapsulated Phaseolus lunatus protein fraction with carboxymethylated flamboyant (Delonix regia) gum/sodium alginate. Food Science and Technology (Campinas), 34(4), 680–687.  https://doi.org/10.1590/1678-457X.6425.CrossRefGoogle Scholar
  57. Segura-Campos, M., Chel-Guerrero, L., & Betancur-Ancona, D. (2008). Synthesis and partial characterization of octenylsuccinic starch from Phaseolus lunatus. Food Hydrocolloids, 22, 1467–1474.  https://doi.org/10.1016/j.foodhyd.2007.09.009.CrossRefGoogle Scholar
  58. Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., & Hernández-Escalante, V. (2011). Bioavailability of bioactive peptides. Food Review International, 27(3), 213–226.  https://doi.org/10.1080/87559129.2011.563395.CrossRefGoogle Scholar
  59. Tang, C., Peng, J., Zhen, D., & Chen, Z. (2009). Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chemistry, 115, 672–678.  https://doi.org/10.1016/j.foodchem.2008.12.068.CrossRefGoogle Scholar
  60. Torruco-Uco, J., Chel-Guerrero, L., Martínez-Ayala, A., Dávila-Ortíz, G., & Betancur-Ancona, D. (2009). Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. Food Science and Technology, 42, 1597–1604.  https://doi.org/10.1016/j.lwt.2009.06.006.CrossRefGoogle Scholar
  61. Treviño-Mejía, D., Luna-Vital, D., Gaytán-Martínez, M., Mendoza, S., & Loarca-Piña, G. (2016). Fortification of commercial nixtamalized maize (Zea mays L.) with common bean (Phaseolus vulgaris L.) increased the nutritional and nutraceutical content of tortillas without modifying sensory properties. Journal of Food Quality, 39, 569–579.  https://doi.org/10.1111/jfq.12251.CrossRefGoogle Scholar
  62. Vioque, J., Pedroche, J., Yust, M., Lqari, H., Megías, C., Girón-Calle, J., Alaiz, M., & Millán, F. (2006). Bioactive peptides in storage plant proteins. Brazilian Journal of Food Technology, Especial Edition III International Day of Proteins and Food Colloids, 99–102.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Sandoval-Peraza
    • 1
    • 2
  • G. Peraza-Mercado
    • 3
  • D. Betancur-Ancona
    • 2
  • A. Castellanos-Ruelas
    • 2
  • L. Chel-Guerrero
    • 2
  1. 1.Universidad del Valle de México, Escuela de Ciencias de la SaludMéridaMexico
  2. 2.Facultad de Ingeniería química—Campus de Ciencias Exactas e IngenieríasUniversidad Autónoma de YucatánMéridaMexico
  3. 3.Instituto de Ciencias Biomédicas (Departamento de Ciencias Químico-Biológicas)Universidad Autónoma de Ciudad JuárezCiudad JuárezMexico

Personalised recommendations