Advertisement

Pulses pp 99-117 | Cite as

Cowpea

  • Subajiny Sivakanthan
  • Terrence Madhujith
  • Ashoka Gamage
  • Na Zhang
Chapter
  • 59 Downloads

Abstract

Cowpea (Vigna unguiculata L. Walp) (Pasquet 1998) also known as black-eyed pea, bachapin bean, southern pea, crowder pea, China pea and cow gram is an herbaceous legume belonging to the family Fabaceae. It is well adapted to harsh arid climates and low fertile soils and more drought- and heat-tolerant than most of its legume relatives (Carvalho et al. 2017; Hall 2004; Timko and Singh 2008). Cowpea has been used for human consumption as well as an animal feed since antiquity. Cowpea plays a vital role in the livelihoods of millions of people in less developed countries of the tropics. For Africans, it plays a pivotal role in the economy and nutrition of their daily life (Houssou et al. 2010).

Keywords

Antinutritional factors Biofortified cowpea Cowpea-fortified foods Cowpea protein isolates Vigna unguiculata Phytates Weaning foods 

References

  1. Abizari, A. R., Moretti, D., Schuth, S., Zimmermann, M. B., Armar-Klemesu, M., & Brouwer, I. D. (2012a). Phytic acid-to-iron molar ratio rather than polyphenol concentration determines iron bioavailability in whole-cowpea meal among young women. The Journal of Nutrition, 142(11), 1950–1955.  https://doi.org/10.3945/jn.112.164095.CrossRefPubMedGoogle Scholar
  2. Abizari, A. R., Moretti, D., Zimmermann, M. B., Armar-Klemesu, M., & Brouwer, I. D. (2012b). Whole cowpea meal fortified with NaFeEDTA reduces iron deficiency among Ghanaian school children in a malaria endemic area. The Journal of Nutrition, 142(10), 1836–1842.  https://doi.org/10.3945/jn.112.165753.CrossRefPubMedGoogle Scholar
  3. Adebooye, O. C., & Singh, V. (2007). Effect of cooking on the profile of phenolics, tannins, phytate, amino acid, fatty acid and mineral nutrients of whole-grain and decorticated vegetable cowpea (Vigna unguiculata L. Walp). Journal of Food Quality, 30(6), 1101–1120.  https://doi.org/10.1111/j.1745-4557.2007.00155.x.CrossRefGoogle Scholar
  4. Ahenkora, K., Adu Dapaah, H. K., & Agyemang, A. (1998). Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp) leaves. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 52(3), 221–229.CrossRefGoogle Scholar
  5. Akande, K. E., & Fabiyi, E. F. (2010). Effect of processing methods on some antinutritional factors in legume seeds for poultry feeding. International Journal of Poultry Science, 9(10), 996–1001.CrossRefGoogle Scholar
  6. Allen, L., de Benoist, B., Dary, O., & Hurrell, R. (2006). Guidelines on food fortification with micronutrients. Geneva: WHO.Google Scholar
  7. Awika, J. M., & Duodu, K. G. (2017). Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. Journal of Functional Foods, 38, 686–697.  https://doi.org/10.1016/j.jff.2016.12.002.CrossRefGoogle Scholar
  8. Baranwal, D. (2017). Malting: An indigenous technology used for improving the nutritional quality of grains—A review. Asian Journal of Dairy and Food Research, 36(3), 179–183.  https://doi.org/10.18805/ajdfr.v36i03.8960.CrossRefGoogle Scholar
  9. Bassey, F. I., McWatters, K. H., Edem, C. A., & Iwegbue, C. M. A. (2013). Formulation and nutritional evaluation of weaning food processed from cooking banana, supplemented with cowpea and peanut. Food Science & Nutrition, 1(5), 384–391.  https://doi.org/10.1002/fsn3.51.CrossRefGoogle Scholar
  10. Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M. L., Olufajo, O., & Fatokun, C. (2018). Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding, 138, 415.  https://doi.org/10.1111/pbr.12589.CrossRefGoogle Scholar
  11. Carvalho, M., Lino-Neto, T., Rosa, E., & Carnide, V. (2017). Cowpea: A legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273–4284.  https://doi.org/10.1002/jsfa.8250.CrossRefPubMedGoogle Scholar
  12. Cavalcante, R. B. M., Morgano, M. A., Silva, K. J. D., Rocha, M. M., Araújo, M. A. M., & Moreira-Araújo, R. S. R. (2016). Cheese bread enriched with biofortified cowpea flour. Ciência e Agrotecnologia, 40, 97–103.CrossRefGoogle Scholar
  13. Chavan, J. K., Kadam, S. S., & Beuchat, L. R. (1989). Nutritional improvement of cereals by sprouting. Critical Reviews in Food Science and Nutrition, 28(5), 401–437.  https://doi.org/10.1080/10408398909527508.CrossRefPubMedGoogle Scholar
  14. Cowpea Storage Project: Profiles of Progress. (2010). Bill and Melinda Gates Foundation. 1–2..Google Scholar
  15. Cruz, A. R. R., & Aragão, F. J. L. (2014). RNAi-based enhanced resistance to cowpea severe mosaic virus and cowpea aphid-borne mosaic virus in transgenic cowpea. Plant Pathology, 63(4), 831–837.  https://doi.org/10.1111/ppa.12178.CrossRefGoogle Scholar
  16. Department of Agriculture Forestry and Fisheries. (2011). Production guidelines for cowpeas. Republic of South AfricaGoogle Scholar
  17. Dumet, D., Adeleke, R., & Faloye, B. (2008). Regeneration guidelines: Cowpea. In M. E. Dulloo, I. Thormann, M. A. Jorge, & J. Hanson (Eds.), Crop specific regeneration guidelines. Rome: CGIAR System-wide Genetic Resource Programme.Google Scholar
  18. Etokakpan, O. U., Eka, O. U., & Ifon, E. T. (1983). Chemical evaluation of the effect of pest infestation on the nutritive value of cowpeas Vigna unguiculata. Food Chemistry, 12(3), 149–157.  https://doi.org/10.1016/0308-8146(83)90001-8.CrossRefGoogle Scholar
  19. FAOSTAT. (2019). Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/#data
  20. Farinu, G. O., & Ingrao, G. (1991). Gross composition, amino acid, phytic acid and trace element contents of thirteen cowpea cultivars and their nutritional significance. Journal of the Science of Food and Agriculture, 55(3), 401–410.  https://doi.org/10.1002/jsfa.2740550308.CrossRefGoogle Scholar
  21. Frota, G., Lopes, L. A. R., Silva, I. C. V., Alfredo, J. A. B., & Arêas, J. A. G. (2017). Nutritional quality of the protein of Vigna unguiculata L. Walp and its protein isolate. Revista Ciência Agronômica, 48(5), 792–798.  https://doi.org/10.5935/1806-6690.20170092.CrossRefGoogle Scholar
  22. Gómez, C. (2004). Cowpea: Postharvest operations. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  23. Goncalves, A., Goufo, P., Barros, A., Dominguez-Perles, R., Trindade, H., Rosa, E. A., Ferreira, L., & Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable Agri-food system: Nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 96(9), 2941–2951.  https://doi.org/10.1002/jsfa.7644.CrossRefPubMedGoogle Scholar
  24. Gupta, M., Abu-Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318–328.  https://doi.org/10.1111/j.1541-4337.2010.00112.x.CrossRefGoogle Scholar
  25. Hall, A. E. (2004). Breeding for adaptation to drought and heat in cowpea. European Journal of Agronomy, 21(4), 447–454.  https://doi.org/10.1016/j.eja.2004.07.005.CrossRefGoogle Scholar
  26. Hashim, N., & Pongjata, J. (2000). Vitamin a activity of rice-based weaning foods enriched with germinated cowpea flour, banana, pumpkin and milk powder. Malaysian Journal of Nutrition, 6(1), 65–73.PubMedGoogle Scholar
  27. Houssou, A. P. F., Ahohuendo, B. C., Fandohan, P., & Hounhouigan, D. J. (2010). Analysis of pre- and post-harvest practices of cowpea (Vigna unguiculata (L.) Walp.) in Benin. International Journal of Biological and Chemical Sciences, 4(5), 1730–1741.  https://doi.org/10.4314/ijbcs.v4i5.65576.CrossRefGoogle Scholar
  28. Iqbal, A., Khalil, I. A., Ateeq, N., & Sayyar Khan, M. (2006). Nutritional quality of important food legumes. Food Chemistry, 97(2), 331–335.  https://doi.org/10.1016/j.foodchem.2005.05.011.CrossRefGoogle Scholar
  29. Jain, A. K., Kumar, S., & Panwar, J. D. S. (2019). Antinutritional factors and their detoxification in pulses-a review. Agricultural Reviews, 30(1), 64–70.Google Scholar
  30. Jakkanwar, S., Rathod, R., & Annapure, U. (2018). Development of cowpea-based (Vigna unguiculata) extruded snacks with improved in vitro protein digestibility. International Food Research Journal, 25(2), 804–813.Google Scholar
  31. Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., & Liyanage, R. (2018). Cowpea: An overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793–4806.  https://doi.org/10.1002/jsfa.9074.CrossRefPubMedGoogle Scholar
  32. Jirapa, P., Normah, H., Zamaliah, M. M., Asmah, R., & Mohamad, K. (2001). Nutritional quality of germinated cowpea flour (Vigna unguiculata) and its application in home prepared powdered weaning foods. Plant Foods for Human Nutrition, 56(3), 203–216.  https://doi.org/10.1023/A:1011142512750.CrossRefPubMedGoogle Scholar
  33. Joshi, P. K., & Rao, P. P. (2017). Global pulses scenario: Status and outlook. Annals of the New York Academy of Sciences, 1392(1), 6–17.  https://doi.org/10.1111/nyas.13298.CrossRefPubMedGoogle Scholar
  34. Kalogeropoulos, N., Chiou, A., Ioannou, M., Karathanos, V. T., Hassapidou, M., & Andrikopoulos, N. K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry, 121(3), 682–690.  https://doi.org/10.1016/j.foodchem.2010.01.005.CrossRefGoogle Scholar
  35. Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Science and Technology, 42(6), 1113–1118.  https://doi.org/10.1016/j.lwt.2009.02.004.CrossRefGoogle Scholar
  36. Lagarda-Diaz, I., Guzman-Partida, A. M., & Vazquez-Moreno, L. (2017). Legume lectins: Proteins with diverse applications. International Journal of Molecular Sciences, 18(6), 1242.  https://doi.org/10.3390/ijms18061242.CrossRefPubMedCentralGoogle Scholar
  37. Lazaridi, E., Ntatsi, G., Fernández, J. A., Karapanos, I., Carnide, V., Savvas, D., & Bebeli, P. J. (2017). Phenotypic diversity and evaluation of fresh pods of cowpea landraces from southern Europe. Journal of the Science of Food and Agriculture, 97(13), 4326–4333.  https://doi.org/10.1002/jsfa.8249.CrossRefPubMedGoogle Scholar
  38. Leite, J., Fischer, D., Rouws, L. F. M., Fernandes-Júnior, P. I., Hofmann, A., Kublik, S., Schloter, M., Xavier, G. R., & Radl, V. (2017). Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Frontiers in Plant Science, 7, 2064–2064.  https://doi.org/10.3389/fpls.2016.02064.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Madodé, Y. E., Houssou, P. A., Linnemann, A. R., Hounhouigan, D. J., Nout, M. J. R., & Van Boekel, M. A. J. S. (2011). Preparation, consumption, and nutritional composition of west African cowpea dishes. Ecology of Food and Nutrition, 50(2), 115–136.  https://doi.org/10.1080/03670244.2011.552371.CrossRefPubMedGoogle Scholar
  40. Madodé, Y. E., Nout, M. J. R., Bakker, E.-J., Linnemann, A. R., Hounhouigan, D. J., & van Boekel, M. A. J. S. (2013). Enhancing the digestibility of cowpea (Vigna unguiculata) by traditional processing and fermentation. LWT - Food Science and Technology, 54(1), 186–193.  https://doi.org/10.1016/j.lwt.2013.04.010.CrossRefGoogle Scholar
  41. Madsen, C. K., & Brinch-Pedersen, H. (2016). The antinutritional components of grains. In Reference Module in Food Science. Amsterdam: Elsevier.  https://doi.org/10.1016/B978-0-08-100596-5.00111-6.CrossRefGoogle Scholar
  42. Maina, A. N., Tchiagam, J. B. N., Gonne, S., Hamadama, Y., Bell, J. M., & Yanou, N. N. (2015). Diallel analysis of polyphenols and phytates content in cowpea (Vigna unguiculata L. Walp.). Scientia Agriculturae, 12(1), 46–51.  https://doi.org/10.15192/PSCP.SA.2015.12.1.4651.CrossRefGoogle Scholar
  43. Marengo, M., Baffour, L. C., Buratti, S., Benedetti, S., Saalia, F. K., Carpen, A., Manful, J., Johnson, P.-N. T., Barbiroli, A., Bonomi, F., Pagani, A., Marti, A., & Iametti, S. (2017). Defining the overall quality of cowpea-enriched rice-based breakfast cereals. Cereal Chemistry, 94(1), 151–157.  https://doi.org/10.1094/CCHEM-04-16-0092-FI.CrossRefGoogle Scholar
  44. Martinez-Villaluenga, C., Frias, J., & Vidal-Valverde, C. (2008). Alpha-galactosides: Antinutritional factors or functional ingredients? Critical Reviews in Food Science and Nutrition, 48(4), 301–316.  https://doi.org/10.1080/10408390701326243.CrossRefPubMedGoogle Scholar
  45. Mubarak, A. E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 89(4), 489–495.  https://doi.org/10.1016/j.foodchem.2004.01.007.CrossRefGoogle Scholar
  46. Pasquet, R. S. (1998). Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv gr Melanophthalmus. Agronomie, 18(1), 61–70.CrossRefGoogle Scholar
  47. Pelembe, L. A. M., Erasmus, C., & Taylor, J. R. N. (2002). Development of a protein-rich composite Sorghum–cowpea instant porridge by extrusion cooking process. LWT - Food Science and Technology, 35(2), 120–127.  https://doi.org/10.1006/fstl.2001.0812.CrossRefGoogle Scholar
  48. Piergiovanni, A. R., & Gatta, C. D. (1994). α-Amylase inhibitors in cowpea (Vigna unguiculata): Effects of soaking and cooking methods. Food Chemistry, 51(1), 79–81.  https://doi.org/10.1016/0308-8146(94)90051-5.CrossRefGoogle Scholar
  49. Preet, K., & Punia, D. (2000). Proximate composition, phytic acid, polyphenols and digestibility (in vitro) of four brown cowpea varieties. International Journal of Food Sciences and Nutrition, 51(3), 189–193.CrossRefGoogle Scholar
  50. Prinyawiwatkul, W., McWatters, K. H., Beuchat, L. R., Phillips, R. D., & Uebersak, M. A. (1996). Cowpea flour: A potential ingredient in food products. Critical Reviews in Food Science and Nutrition, 36(5), 413–436.  https://doi.org/10.1080/10408399609527734.CrossRefPubMedGoogle Scholar
  51. Richard, A. (1847). Tentamen florae Abyssinicae. Apud Arthus Bertrand, Editorem, Paris.Google Scholar
  52. Sebetha, E. T., Modi, A. T., & Owoeye, L. G. (2015). Cowpea crude protein as affected by cropping system, site and nitrogen fertilization. Journal of Agricultural Science, 7(1), 224–234.Google Scholar
  53. Shevkani, K., Kaur, A., Kumar, S., & Singh, N. (2015). Cowpea protein isolates: Functional properties and application in gluten-free rice muffins. LWT - Food Science and Technology, 63(2), 927–933.  https://doi.org/10.1016/j.lwt.2015.04.058.CrossRefGoogle Scholar
  54. Simion, T. (2018). Breeding cowpea Vigna unguiculata l. Walp for quality traits. Annals of Reviews and Research, 3(2), 555609.Google Scholar
  55. Singh, B., Singh, J. P., Shevkani, K., Singh, N., & Kaur, A. (2017). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, 54(4), 858–870.  https://doi.org/10.1007/s13197-016-2391-9.CrossRefPubMedGoogle Scholar
  56. Subuola, F., Widodo, Y., & Kehinde, T. (2012). Processing and utilization of legumes in the tropics. In A. A. Eissa (Ed.), Trends in vital food and control engineering. Rijeka: InTechOpen.  https://doi.org/10.5772/36496.CrossRefGoogle Scholar
  57. Thangadurai, D. (2005). Chemical composition and nutritional potential of Vigna unguiculata ssp. Cylindrica (Fabaceae). Journal of Food Biochemistry, 29(1), 88–98.  https://doi.org/10.1111/j.1745-4514.2005.00014.x.CrossRefGoogle Scholar
  58. Timko, M. P., & Singh, B. (2008). Cowpea: A multifunctional legume. In P. H. Moore & R. Ming (Eds.), Genomics of tropical crop plants (Plant genetics and genomics: Crops and models) (Vol. 1, pp. 227–258). New York: Springer.CrossRefGoogle Scholar
  59. Tiroesele, B., Thomas, K., & Seketeme, S. (2015). Control of cowpea weevil, Callosobruchus Maculatus (F.) (Coleoptera: Bruchidae), using natural plant products. Insects, 6(1), 77–84.  https://doi.org/10.3390/insects6010077.CrossRefGoogle Scholar
  60. Tresina, P. S., & Mohan, V. R. (2011). Effect of gamma irradiation on physicochemical properties, proximate composition, vitamins and antinutritional factors of the tribal pulse Vigna unguiculata subsp. unguiculata. International Journal of Food Science & Technology, 46(8), 1739–1746.  https://doi.org/10.1111/j.1365-2621.2011.02678.x.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Subajiny Sivakanthan
    • 1
  • Terrence Madhujith
    • 2
  • Ashoka Gamage
    • 3
  • Na Zhang
    • 4
  1. 1.Department of Agricultural Chemistry, Faculty of AgricultureUniversity of JaffnaJaffnaSri Lanka
  2. 2.Department of Food Science and Technology, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Department of Chemical and Process Engineering, Faculty of EngineeringUniversity of PeradeniyaPeradeniyaSri Lanka
  4. 4.College of Food Engineering, Harbin University of CommerceHarbinChina

Personalised recommendations