Skip to main content

Cowpea

  • Chapter
  • First Online:
Book cover Pulses

Abstract

Cowpea (Vigna unguiculata L. Walp) (Pasquet 1998) also known as black-eyed pea, bachapin bean, southern pea, crowder pea, China pea and cow gram is an herbaceous legume belonging to the family Fabaceae. It is well adapted to harsh arid climates and low fertile soils and more drought- and heat-tolerant than most of its legume relatives (Carvalho et al. 2017; Hall 2004; Timko and Singh 2008). Cowpea has been used for human consumption as well as an animal feed since antiquity. Cowpea plays a vital role in the livelihoods of millions of people in less developed countries of the tropics. For Africans, it plays a pivotal role in the economy and nutrition of their daily life (Houssou et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abizari, A. R., Moretti, D., Schuth, S., Zimmermann, M. B., Armar-Klemesu, M., & Brouwer, I. D. (2012a). Phytic acid-to-iron molar ratio rather than polyphenol concentration determines iron bioavailability in whole-cowpea meal among young women. The Journal of Nutrition, 142(11), 1950–1955. https://doi.org/10.3945/jn.112.164095.

    Article  CAS  PubMed  Google Scholar 

  • Abizari, A. R., Moretti, D., Zimmermann, M. B., Armar-Klemesu, M., & Brouwer, I. D. (2012b). Whole cowpea meal fortified with NaFeEDTA reduces iron deficiency among Ghanaian school children in a malaria endemic area. The Journal of Nutrition, 142(10), 1836–1842. https://doi.org/10.3945/jn.112.165753.

    Article  CAS  PubMed  Google Scholar 

  • Adebooye, O. C., & Singh, V. (2007). Effect of cooking on the profile of phenolics, tannins, phytate, amino acid, fatty acid and mineral nutrients of whole-grain and decorticated vegetable cowpea (Vigna unguiculata L. Walp). Journal of Food Quality, 30(6), 1101–1120. https://doi.org/10.1111/j.1745-4557.2007.00155.x.

    Article  CAS  Google Scholar 

  • Ahenkora, K., Adu Dapaah, H. K., & Agyemang, A. (1998). Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp) leaves. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 52(3), 221–229.

    Article  CAS  Google Scholar 

  • Akande, K. E., & Fabiyi, E. F. (2010). Effect of processing methods on some antinutritional factors in legume seeds for poultry feeding. International Journal of Poultry Science, 9(10), 996–1001.

    Article  CAS  Google Scholar 

  • Allen, L., de Benoist, B., Dary, O., & Hurrell, R. (2006). Guidelines on food fortification with micronutrients. Geneva: WHO.

    Google Scholar 

  • Awika, J. M., & Duodu, K. G. (2017). Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. Journal of Functional Foods, 38, 686–697. https://doi.org/10.1016/j.jff.2016.12.002.

    Article  CAS  Google Scholar 

  • Baranwal, D. (2017). Malting: An indigenous technology used for improving the nutritional quality of grains—A review. Asian Journal of Dairy and Food Research, 36(3), 179–183. https://doi.org/10.18805/ajdfr.v36i03.8960.

    Article  Google Scholar 

  • Bassey, F. I., McWatters, K. H., Edem, C. A., & Iwegbue, C. M. A. (2013). Formulation and nutritional evaluation of weaning food processed from cooking banana, supplemented with cowpea and peanut. Food Science & Nutrition, 1(5), 384–391. https://doi.org/10.1002/fsn3.51.

    Article  CAS  Google Scholar 

  • Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M. L., Olufajo, O., & Fatokun, C. (2018). Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding, 138, 415. https://doi.org/10.1111/pbr.12589.

    Article  Google Scholar 

  • Carvalho, M., Lino-Neto, T., Rosa, E., & Carnide, V. (2017). Cowpea: A legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273–4284. https://doi.org/10.1002/jsfa.8250.

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante, R. B. M., Morgano, M. A., Silva, K. J. D., Rocha, M. M., Araújo, M. A. M., & Moreira-Araújo, R. S. R. (2016). Cheese bread enriched with biofortified cowpea flour. Ciência e Agrotecnologia, 40, 97–103.

    Article  Google Scholar 

  • Chavan, J. K., Kadam, S. S., & Beuchat, L. R. (1989). Nutritional improvement of cereals by sprouting. Critical Reviews in Food Science and Nutrition, 28(5), 401–437. https://doi.org/10.1080/10408398909527508.

    Article  CAS  PubMed  Google Scholar 

  • Cowpea Storage Project: Profiles of Progress. (2010). Bill and Melinda Gates Foundation. 1–2..

    Google Scholar 

  • Cruz, A. R. R., & Aragão, F. J. L. (2014). RNAi-based enhanced resistance to cowpea severe mosaic virus and cowpea aphid-borne mosaic virus in transgenic cowpea. Plant Pathology, 63(4), 831–837. https://doi.org/10.1111/ppa.12178.

    Article  CAS  Google Scholar 

  • Department of Agriculture Forestry and Fisheries. (2011). Production guidelines for cowpeas. Republic of South Africa

    Google Scholar 

  • Dumet, D., Adeleke, R., & Faloye, B. (2008). Regeneration guidelines: Cowpea. In M. E. Dulloo, I. Thormann, M. A. Jorge, & J. Hanson (Eds.), Crop specific regeneration guidelines. Rome: CGIAR System-wide Genetic Resource Programme.

    Google Scholar 

  • Etokakpan, O. U., Eka, O. U., & Ifon, E. T. (1983). Chemical evaluation of the effect of pest infestation on the nutritive value of cowpeas Vigna unguiculata. Food Chemistry, 12(3), 149–157. https://doi.org/10.1016/0308-8146(83)90001-8.

    Article  CAS  Google Scholar 

  • FAOSTAT. (2019). Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/#data

  • Farinu, G. O., & Ingrao, G. (1991). Gross composition, amino acid, phytic acid and trace element contents of thirteen cowpea cultivars and their nutritional significance. Journal of the Science of Food and Agriculture, 55(3), 401–410. https://doi.org/10.1002/jsfa.2740550308.

    Article  CAS  Google Scholar 

  • Frota, G., Lopes, L. A. R., Silva, I. C. V., Alfredo, J. A. B., & Arêas, J. A. G. (2017). Nutritional quality of the protein of Vigna unguiculata L. Walp and its protein isolate. Revista Ciência Agronômica, 48(5), 792–798. https://doi.org/10.5935/1806-6690.20170092.

    Article  Google Scholar 

  • Gómez, C. (2004). Cowpea: Postharvest operations. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Goncalves, A., Goufo, P., Barros, A., Dominguez-Perles, R., Trindade, H., Rosa, E. A., Ferreira, L., & Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable Agri-food system: Nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 96(9), 2941–2951. https://doi.org/10.1002/jsfa.7644.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, M., Abu-Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318–328. https://doi.org/10.1111/j.1541-4337.2010.00112.x.

    Article  CAS  Google Scholar 

  • Hall, A. E. (2004). Breeding for adaptation to drought and heat in cowpea. European Journal of Agronomy, 21(4), 447–454. https://doi.org/10.1016/j.eja.2004.07.005.

    Article  Google Scholar 

  • Hashim, N., & Pongjata, J. (2000). Vitamin a activity of rice-based weaning foods enriched with germinated cowpea flour, banana, pumpkin and milk powder. Malaysian Journal of Nutrition, 6(1), 65–73.

    CAS  PubMed  Google Scholar 

  • Houssou, A. P. F., Ahohuendo, B. C., Fandohan, P., & Hounhouigan, D. J. (2010). Analysis of pre- and post-harvest practices of cowpea (Vigna unguiculata (L.) Walp.) in Benin. International Journal of Biological and Chemical Sciences, 4(5), 1730–1741. https://doi.org/10.4314/ijbcs.v4i5.65576.

    Article  Google Scholar 

  • Iqbal, A., Khalil, I. A., Ateeq, N., & Sayyar Khan, M. (2006). Nutritional quality of important food legumes. Food Chemistry, 97(2), 331–335. https://doi.org/10.1016/j.foodchem.2005.05.011.

    Article  CAS  Google Scholar 

  • Jain, A. K., Kumar, S., & Panwar, J. D. S. (2019). Antinutritional factors and their detoxification in pulses-a review. Agricultural Reviews, 30(1), 64–70.

    Google Scholar 

  • Jakkanwar, S., Rathod, R., & Annapure, U. (2018). Development of cowpea-based (Vigna unguiculata) extruded snacks with improved in vitro protein digestibility. International Food Research Journal, 25(2), 804–813.

    CAS  Google Scholar 

  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., & Liyanage, R. (2018). Cowpea: An overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793–4806. https://doi.org/10.1002/jsfa.9074.

    Article  CAS  PubMed  Google Scholar 

  • Jirapa, P., Normah, H., Zamaliah, M. M., Asmah, R., & Mohamad, K. (2001). Nutritional quality of germinated cowpea flour (Vigna unguiculata) and its application in home prepared powdered weaning foods. Plant Foods for Human Nutrition, 56(3), 203–216. https://doi.org/10.1023/A:1011142512750.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, P. K., & Rao, P. P. (2017). Global pulses scenario: Status and outlook. Annals of the New York Academy of Sciences, 1392(1), 6–17. https://doi.org/10.1111/nyas.13298.

    Article  CAS  PubMed  Google Scholar 

  • Kalogeropoulos, N., Chiou, A., Ioannou, M., Karathanos, V. T., Hassapidou, M., & Andrikopoulos, N. K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry, 121(3), 682–690. https://doi.org/10.1016/j.foodchem.2010.01.005.

    Article  CAS  Google Scholar 

  • Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Science and Technology, 42(6), 1113–1118. https://doi.org/10.1016/j.lwt.2009.02.004.

    Article  CAS  Google Scholar 

  • Lagarda-Diaz, I., Guzman-Partida, A. M., & Vazquez-Moreno, L. (2017). Legume lectins: Proteins with diverse applications. International Journal of Molecular Sciences, 18(6), 1242. https://doi.org/10.3390/ijms18061242.

    Article  CAS  PubMed Central  Google Scholar 

  • Lazaridi, E., Ntatsi, G., Fernández, J. A., Karapanos, I., Carnide, V., Savvas, D., & Bebeli, P. J. (2017). Phenotypic diversity and evaluation of fresh pods of cowpea landraces from southern Europe. Journal of the Science of Food and Agriculture, 97(13), 4326–4333. https://doi.org/10.1002/jsfa.8249.

    Article  CAS  PubMed  Google Scholar 

  • Leite, J., Fischer, D., Rouws, L. F. M., Fernandes-Júnior, P. I., Hofmann, A., Kublik, S., Schloter, M., Xavier, G. R., & Radl, V. (2017). Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Frontiers in Plant Science, 7, 2064–2064. https://doi.org/10.3389/fpls.2016.02064.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madodé, Y. E., Houssou, P. A., Linnemann, A. R., Hounhouigan, D. J., Nout, M. J. R., & Van Boekel, M. A. J. S. (2011). Preparation, consumption, and nutritional composition of west African cowpea dishes. Ecology of Food and Nutrition, 50(2), 115–136. https://doi.org/10.1080/03670244.2011.552371.

    Article  PubMed  Google Scholar 

  • Madodé, Y. E., Nout, M. J. R., Bakker, E.-J., Linnemann, A. R., Hounhouigan, D. J., & van Boekel, M. A. J. S. (2013). Enhancing the digestibility of cowpea (Vigna unguiculata) by traditional processing and fermentation. LWT - Food Science and Technology, 54(1), 186–193. https://doi.org/10.1016/j.lwt.2013.04.010.

    Article  CAS  Google Scholar 

  • Madsen, C. K., & Brinch-Pedersen, H. (2016). The antinutritional components of grains. In Reference Module in Food Science. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00111-6.

    Chapter  Google Scholar 

  • Maina, A. N., Tchiagam, J. B. N., Gonne, S., Hamadama, Y., Bell, J. M., & Yanou, N. N. (2015). Diallel analysis of polyphenols and phytates content in cowpea (Vigna unguiculata L. Walp.). Scientia Agriculturae, 12(1), 46–51. https://doi.org/10.15192/PSCP.SA.2015.12.1.4651.

    Article  CAS  Google Scholar 

  • Marengo, M., Baffour, L. C., Buratti, S., Benedetti, S., Saalia, F. K., Carpen, A., Manful, J., Johnson, P.-N. T., Barbiroli, A., Bonomi, F., Pagani, A., Marti, A., & Iametti, S. (2017). Defining the overall quality of cowpea-enriched rice-based breakfast cereals. Cereal Chemistry, 94(1), 151–157. https://doi.org/10.1094/CCHEM-04-16-0092-FI.

    Article  CAS  Google Scholar 

  • Martinez-Villaluenga, C., Frias, J., & Vidal-Valverde, C. (2008). Alpha-galactosides: Antinutritional factors or functional ingredients? Critical Reviews in Food Science and Nutrition, 48(4), 301–316. https://doi.org/10.1080/10408390701326243.

    Article  CAS  PubMed  Google Scholar 

  • Mubarak, A. E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 89(4), 489–495. https://doi.org/10.1016/j.foodchem.2004.01.007.

    Article  CAS  Google Scholar 

  • Pasquet, R. S. (1998). Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv gr Melanophthalmus. Agronomie, 18(1), 61–70.

    Article  Google Scholar 

  • Pelembe, L. A. M., Erasmus, C., & Taylor, J. R. N. (2002). Development of a protein-rich composite Sorghum–cowpea instant porridge by extrusion cooking process. LWT - Food Science and Technology, 35(2), 120–127. https://doi.org/10.1006/fstl.2001.0812.

    Article  CAS  Google Scholar 

  • Piergiovanni, A. R., & Gatta, C. D. (1994). α-Amylase inhibitors in cowpea (Vigna unguiculata): Effects of soaking and cooking methods. Food Chemistry, 51(1), 79–81. https://doi.org/10.1016/0308-8146(94)90051-5.

    Article  CAS  Google Scholar 

  • Preet, K., & Punia, D. (2000). Proximate composition, phytic acid, polyphenols and digestibility (in vitro) of four brown cowpea varieties. International Journal of Food Sciences and Nutrition, 51(3), 189–193.

    Article  CAS  Google Scholar 

  • Prinyawiwatkul, W., McWatters, K. H., Beuchat, L. R., Phillips, R. D., & Uebersak, M. A. (1996). Cowpea flour: A potential ingredient in food products. Critical Reviews in Food Science and Nutrition, 36(5), 413–436. https://doi.org/10.1080/10408399609527734.

    Article  CAS  PubMed  Google Scholar 

  • Richard, A. (1847). Tentamen florae Abyssinicae. Apud Arthus Bertrand, Editorem, Paris.

    Google Scholar 

  • Sebetha, E. T., Modi, A. T., & Owoeye, L. G. (2015). Cowpea crude protein as affected by cropping system, site and nitrogen fertilization. Journal of Agricultural Science, 7(1), 224–234.

    Google Scholar 

  • Shevkani, K., Kaur, A., Kumar, S., & Singh, N. (2015). Cowpea protein isolates: Functional properties and application in gluten-free rice muffins. LWT - Food Science and Technology, 63(2), 927–933. https://doi.org/10.1016/j.lwt.2015.04.058.

    Article  CAS  Google Scholar 

  • Simion, T. (2018). Breeding cowpea Vigna unguiculata l. Walp for quality traits. Annals of Reviews and Research, 3(2), 555609.

    Google Scholar 

  • Singh, B., Singh, J. P., Shevkani, K., Singh, N., & Kaur, A. (2017). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, 54(4), 858–870. https://doi.org/10.1007/s13197-016-2391-9.

    Article  CAS  PubMed  Google Scholar 

  • Subuola, F., Widodo, Y., & Kehinde, T. (2012). Processing and utilization of legumes in the tropics. In A. A. Eissa (Ed.), Trends in vital food and control engineering. Rijeka: InTechOpen. https://doi.org/10.5772/36496.

    Chapter  Google Scholar 

  • Thangadurai, D. (2005). Chemical composition and nutritional potential of Vigna unguiculata ssp. Cylindrica (Fabaceae). Journal of Food Biochemistry, 29(1), 88–98. https://doi.org/10.1111/j.1745-4514.2005.00014.x.

    Article  CAS  Google Scholar 

  • Timko, M. P., & Singh, B. (2008). Cowpea: A multifunctional legume. In P. H. Moore & R. Ming (Eds.), Genomics of tropical crop plants (Plant genetics and genomics: Crops and models) (Vol. 1, pp. 227–258). New York: Springer.

    Chapter  Google Scholar 

  • Tiroesele, B., Thomas, K., & Seketeme, S. (2015). Control of cowpea weevil, Callosobruchus Maculatus (F.) (Coleoptera: Bruchidae), using natural plant products. Insects, 6(1), 77–84. https://doi.org/10.3390/insects6010077.

    Article  Google Scholar 

  • Tresina, P. S., & Mohan, V. R. (2011). Effect of gamma irradiation on physicochemical properties, proximate composition, vitamins and antinutritional factors of the tribal pulse Vigna unguiculata subsp. unguiculata. International Journal of Food Science & Technology, 46(8), 1739–1746. https://doi.org/10.1111/j.1365-2621.2011.02678.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivakanthan, S., Madhujith, T., Gamage, A., Zhang, N. (2020). Cowpea. In: Manickavasagan, A., Thirunathan, P. (eds) Pulses. Springer, Cham. https://doi.org/10.1007/978-3-030-41376-7_6

Download citation

Publish with us

Policies and ethics