Advertisement

Pulses pp 77-97 | Cite as

Common Bean

  • T. S. Rathna Priya
  • A. ManickavasaganEmail author
Chapter
  • 53 Downloads

Abstract

Common bean is a legume that belongs to the family Leguminosae, a native to America even though its exact place of origin is unknown (Salcedo 2008; Gentry 1969). It is one of the oldest crops cultivated (Geil and Anderson 1994). Common bean, because of its easy availability and nutritional properties, has now become one of the most important crops consumed throughout the world. These pulses belong to Phaseolus vulgaris species and vary greatly due to their genetic diversity. In 2001, around 26,500 varieties of Phaseolus vulgaris beans have been included in the FAO (Food and Agriculture Organization) pulse list (CGIAR-beanfocus).

Keywords

Production Nutritional composition Antinutritional factors Postharvest processing Soaking Dehulling Germination Fermentation Thermal processing Cooking Microwave heating Micronisation Extrusion Irradiation 

References

  1. Aguilera, J. M., & Steinsapir, A. (2013). Dry processes to retard quality losses of beans (Phaseolus vulgaris) during storage. Canadian Institute of Food Technology Journal, 18, 72–78.  https://doi.org/10.1016/s0315-5463(85)71723-3.CrossRefGoogle Scholar
  2. Alonso, R., Aguirre, A., & Marzo, F. (2000). Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry, 68, 159–165.  https://doi.org/10.1016/S0308-8146(99)00169.CrossRefGoogle Scholar
  3. Anton, A. A., Gary Fulcher, R., & Arntfield, S. D. (2009). Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chemistry, 113, 989–996.  https://doi.org/10.1016/j.foodchem.2008.08.050.CrossRefGoogle Scholar
  4. Anton, A. A., Ross, K. A., Beta, T., Gary Fulcher, R., & Arntfield, S. D. (2008a). Effect of pre-dehulling treatments on some nutritional and physical properties of navy and pinto beans (Phaseolus vulgaris L.). LWT - Food Science and Technology, 41, 771–778.  https://doi.org/10.1016/j.lwt.2007.05.014.CrossRefGoogle Scholar
  5. Anton, A. A., Ross, K. A., Lukow, O. M., Fulcher, R. G., & Arntfield, S. D. (2008b). Influence of added bean flour (Phaseolus vulgaris L.) on some physical and nutritional properties of wheat flour tortillas. Food Chemistry, 109, 33–41.  https://doi.org/10.1016/j.foodchem.2007.12.005.CrossRefPubMedGoogle Scholar
  6. Audu, S. S., & Aremu, M. O. (2011). Nutritional composition of raw and processed pinto bean (Phaseolus vulgaris L.) grown in Nigeria. Journal of Food, Agriculture and Environment, 9, 72–80.Google Scholar
  7. Barampama, Z., & Simard, R. E. (1994). Oligosaccharides, antinutritional factors, and protein digestibility of dry beans as affected by processing. Journal of Food Science, 59, 833–838.  https://doi.org/10.1111/j.1365-2621.1994.tb08139.x.CrossRefGoogle Scholar
  8. Bellido, G., Arntfield, S. D., Cenkowski, S., & Scanlon, M. (2006). Effects of micronization pretreatments on the physicochemical properties of navy and black beans (Phaseolus vulgaris L.). LWT - Food Science and Technology, 39, 779–787.  https://doi.org/10.1016/j.lwt.2005.05.009.CrossRefGoogle Scholar
  9. Bellido, G. G., Arntfield, S. D., Scanlon, M. G., & Cenkowski, S. (2003). The effect of micronization operational conditions on the physicochemical properties of navy beans (Phaseolus vulgaris L.). Journal of Food Science, 68, 1731–1735.  https://doi.org/10.1111/j.1365-2621.2003.tb12320.x.CrossRefGoogle Scholar
  10. Bender, A. E., & Reaidi, G. B. (1982). Toxicity of kidney beans (Phaseolus vulgaris) with particular reference to lectins. Journal of Plant Foods, 4(1), 15–22.Google Scholar
  11. Beninger, C. W., & Hosfield, G. L. (2003). Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. Journal of Agricultural and Food Chemistry, 51, 7879–7883.  https://doi.org/10.1021/jf0304324.CrossRefPubMedGoogle Scholar
  12. Berrios, J. D. J., Swanson, B. G., & Adeline Cheong, W. (1999). Physico-chemical characterization of stored black beans (Phaseolus vulgaris L.). Food Research International, 32, 669–676.  https://doi.org/10.1016/S0963-9969(99)00144-1.CrossRefGoogle Scholar
  13. Bourne, G. H. (1989). Nutritional value of cereal products, beans and starches. Basel: Karger.Google Scholar
  14. CGIAR-Beanfocus. (2019) Common bean: The nearly perfect food—The importance of common bean. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/ciatinfocus/beanfocus.pdf
  15. Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52, 243–261.  https://doi.org/10.1016/j.foodres.2013.02.033.CrossRefGoogle Scholar
  16. Coelho, C. M. M., de Mattos Bellato, C., Santos, J. C. P., Ortega, E. M. M., & Tsai, S. M. (2007). Effect of phytate and storage conditions on the development of the ‘hard-to-cook’ phenomenon in common beans. Journal of Science and Food Agriculture, 87, 1237–1243.CrossRefGoogle Scholar
  17. CGIAR-Common Bean. (2019) Grain legumes—A CGIAR Research Program. Retrieved from https://www.grainlegumes.cgiar.org/crops/common-bean/
  18. Cristofaro, E., Mottu, F., & Wuhrmann, J. J. (1974). Involvement of the raffinose family of oligosaccharides in flatulence. In H. L. Sipple & K. W. McNutt (Eds.), Sugars in nutrition. New York: Academic.Google Scholar
  19. Dahm, C. C., Keogh, R. H., Spencer, E. A., Greenwood, D. C., Key, T. J., Fentiman, I. S., Shipley, M. J., Brunner, E. J., Cade, J. E., Burley, V. J., Mishra, G., Stephen, A. M., Kuh, D., White, I. R., Luben, R., Lentjes, M. A. H., Khaw, K. T., & Rodwell, S. A. (2010). Dietary fiber and colorectal cancer risk: A nested case-control study using food diaries. Journal of the National Cancer Institute, 102, 614–626.  https://doi.org/10.1093/jnci/djq092.CrossRefPubMedGoogle Scholar
  20. Deshpande, S. S., Sathe, S. K., Salunkhe, D. K., & Cornforth, D. P. (1982). Effects of dehulling on phytic acid, polyphenols, and enzyme inhibitors of dry beans (Phaseolus vulgaris L.). Journal of Food Science, 47, 1846–1850.  https://doi.org/10.1111/j.1365-2621.1982.tb12896.x.CrossRefGoogle Scholar
  21. Deshpande, S. S., Sathe, S. K., Salunkhe, D. K., & Rackis, J. J. (1984). Dry beans of Phaseolus: A review. Part 3. C R C Critical Reviews in Food Science and Nutrition, 21(2), 137–195.  https://doi.org/10.1080/10408398409527399.CrossRefGoogle Scholar
  22. Dhurandhar, N. V., & Chang, K. C. (1990). Effect of cooking on firmness, trypsin inhibitors, lectins and cystine/cysteine content of navy and red kidney beans (Phaseolus vulgaris). Journal of Food Science, 55, 470–474.  https://doi.org/10.1111/j.1365-2621.1990.tb06789.x.CrossRefGoogle Scholar
  23. El-Niely, H. F. G. (2007). Effect of radiation processing on antinutrients, in-vitro protein digestibility and protein efficiency ratio bioassay of legume seeds. Radiation Physics and Chemistry, 76, 1050–1057.  https://doi.org/10.1016/j.radphyschem.2006.10.006.CrossRefGoogle Scholar
  24. Estévez, A. M., Castillo, E., Figuerola, F., & Yáñez, E. (1991). Effect of processing on some chemical and nutritional characteristics of pre-cooked and dehydrated legumes. Plant Foods for Human Nutrition, 41, 193–201.  https://doi.org/10.1007/BF02196387.CrossRefPubMedGoogle Scholar
  25. FAO pulses – International year of pulses. (2016). Trends in worldwide production, consumption and trade of pulses. Retrieved from http://www.fao.org/pulses-2016/news/news-detail/en/c/381491/
  26. FAOSTAT. (2019). Crops—Area harvested, yield and production quantity. Retrieved from http://www.fao.org/faostat/en/#data/QC
  27. Fasina, O., Tyler, B., Pickard, M., Zheng, G. H., & Wang, N. (2001). Effect of infrared heating on the properties of legume seeds. International Journal of Food Science and Technology, 36, 79–90.  https://doi.org/10.1046/j.1365-2621.2001.00420.CrossRefGoogle Scholar
  28. Gallegos-Infante, J. A., Rocha-Guzman, N. E., Gonzalez-Laredo, R. F., Ochoa-Martínez, L. A., Corzo, N., Bello-Perez, L. A., Medina-Torres, L., & Peralta-Alvarez, L. E. (2010). Quality of spaghetti pasta containing Mexican common bean flour (Phaseolus vulgaris L.). Food Chemistry, 119, 1544–1549.  https://doi.org/10.1016/j.foodchem.2009.09.040.CrossRefGoogle Scholar
  29. Geil, P. B., & Anderson, J. W. (1994). Nutrition and health implications of dry beans: A review. Journal of the American College of Nutrition, 13, 549–558.  https://doi.org/10.1080/07315724.1994.10718446.CrossRefPubMedGoogle Scholar
  30. Gentry, H. S. (1969). In H. Scott (Ed.), Origin of the common bean, Phaseolus vulgaris. New York: Springer. Retrieved from http://www.jstor.org/stable/4253014.CrossRefGoogle Scholar
  31. González, Z., & Pérez, E. (2002). Evaluation of lentil starches modified by microwave irradiation and extrusion cooking. Food Research International, 35, 415–420.  https://doi.org/10.1016/S0963-9969(01)00135-1.CrossRefGoogle Scholar
  32. Grant, G., More, L. J., McKenzie, N. H., & Pusztai, A. (1982). The effect of heating on the haemagglutinating activity and nutritional properties of bean (Phaseolus vulgaris) seeds. Journal of the Science of Food and Agriculture, 33(12), 1324–1326.Google Scholar
  33. Gupta, Y. P. (1983). Nutritive value of food legumes. In S. K. Arora (Ed.), Chemistry and biochemistry of legumes (pp. 187–327). London: Edward Arnold Publication.Google Scholar
  34. Güzel, D., & Sayar, S. (2012). Effect of cooking methods on selected physicochemical and nutritional properties of barlotto bean, chickpea, faba bean, and white kidney bean. Journal of Food Science and Technology, 49, 89–95.  https://doi.org/10.1007/s13197-011-0260-0.CrossRefPubMedGoogle Scholar
  35. Haileslassie, H. A., Henry, C. J., & Tyler, R. T. (2016). Impact of household food processing strategies on antinutrient (phytate, tannin and polyphenol) contents of chickpeas (Cicer arietinum L.) and beans (Phaseolus vulgaris L.): A review. International Journal of Food Science and Technology, 51, 1947–1957.  https://doi.org/10.1111/ijfs.13166.CrossRefGoogle Scholar
  36. Hotz, C., & Gibson, R. S. (2007). Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition, 137, 1097–1100.  https://doi.org/10.1093/jn/137.4.1097.CrossRefPubMedGoogle Scholar
  37. Jones, A. L. (1999). Phaseolus bean: Post-harvest operations. Rome: Food and Agriculture Organisation of the United Nation. INPhO-post-harvest Compend. P25.Google Scholar
  38. Katungi, E., Farrow, A., Chianu, J., Sperling, L., & Beebe, S. (2009). Common bean in eastern and southern Africa: A situation and outlook analysis (pp. 1–44). Cali: International Centre for Tropical Agriculture.Google Scholar
  39. Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Science and Technology, 42, 1113–1118.  https://doi.org/10.1016/j.lwt.2009.02.004.CrossRefGoogle Scholar
  40. Khattab, R. Y., Arntfield, S. D., & Nyachoti, C. M. (2009). Nutritional quality of legume seeds as affected by some physical treatments, part 1: Protein quality evaluation. LWT - Food Science and Technology, 42, 1107–1112.  https://doi.org/10.1016/j.lwt.2009.02.008.CrossRefGoogle Scholar
  41. Koehler, H. H., Herrick, H. E., & Burke, D. W. (1986). Differentiating the lectin activity in twenty-four cultivars of dry beans (Phaseolus vulgaris L.). Journal of Food Science, 51, 1471–1475.  https://doi.org/10.1111/j.1365-2621.1986.tb13837.x.CrossRefGoogle Scholar
  42. Lanza, E., Hartman, T. J., Albert, P. S., Shields, R., Slattery, M., Caan, B., Paskett, E., Iber, F., Kikendall, J. W., Lance, P., Daston, C., & Schatzkin, A. (2006). High dry bean intake and reduced risk of advanced colorectal adenoma recurrence among participants in the polyp prevention trial. The Journal of Nutrition, 136, 1896–1903.  https://doi.org/10.1093/jn/136.7.1896.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dronachari, M., & Yadav, B. K. (2015). Application of microwave heat treatment in processing of pulses 1. Journal of Academia and Industrial Research, 3, 401–407.Google Scholar
  44. Martín-Cabrejas, M. A., Sanfiz, B., Vidal, A., Mollá, E., Esteban, R., & López-Andréu, F. J. (2004). Effect of fermentation and autoclaving on dietary Fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52, 261–266.  https://doi.org/10.1021/jf034980t.CrossRefPubMedGoogle Scholar
  45. Miller Magazine. (2016). World milling and pulses technologies—World dry bean and chickpea market. Retrieved from https://www.millermagazine.com/english/world-dry-bean-and-chickpea-market/.html
  46. Nesli, S., Ulla, H.-M., & Kaisa, P. (2016). Traditional and new food uses of pulses. Cereal Chemistry, 94, 66–73.  https://doi.org/10.1094/CCHEM-04-16-0082-FI.CrossRefGoogle Scholar
  47. Oghbaei, M., & Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food and Agriculture, 2, 1–14.  https://doi.org/10.1080/23311932.2015.1136015.CrossRefGoogle Scholar
  48. Olang’o, N. K., Ojijo, Toshinori, K., & Hirozi, K. (2000). Composition, soaking and softening characteristics of some Kenyan beans (Phaseolus vulgaris L.). Food Science and Technology Research, 6, 12–18.CrossRefGoogle Scholar
  49. Olaofe, O., Umar, Y. O., & Adediran, G. O. (1993). The effect of nematicides on the nutritive value and functional properties of cowpea seeds (Vigna unguiculata L. Walp). Food Chemistry, 46, 337–341.  https://doi.org/10.1016/0308-8146(93)90001-V.CrossRefGoogle Scholar
  50. Patterson, C. A., Curran, J., & Der, T. (2017). Effect of processing on active compounds in fresh-cut vegetables. Processing and Impact on Active Components in Food, 94, 1–10.  https://doi.org/10.1016/B978-0-12-404699-3.00001-9.CrossRefGoogle Scholar
  51. Petry, N., Egli, I., Zeder, C., Walczyk, T., & Hurrell, R. (2010). Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. The Journal of Nutrition, 140, 1977–1982.  https://doi.org/10.3945/jn.110.125369.CrossRefPubMedGoogle Scholar
  52. Reddy, N. R., Pierson, M. D., Sathe, S. K., & Salunkhe, D. K. (1984). Chemical, nutritional and physiological aspects of dry bean carbohydrates—A review. Food Chemistry, 13, 25–68.  https://doi.org/10.1016/0308-8146(84)90026-8.CrossRefGoogle Scholar
  53. Rocha-Guzman, N. E., Gallegos-Infante, J. A., Gonzalez-Laredo, R. F., Bello-Perez, A., Delgado-Licon, E., Ochoa-Martinez, A., & Prado-Ortiz, M. J. (2008). Physical properties of extruded products from three Mexican common beans (Phaseolus vulgaris L.) cultivars. Plant Foods for Human Nutrition, 63, 99–104.  https://doi.org/10.1007/s11130-008-0076-x.CrossRefPubMedGoogle Scholar
  54. Sai-Ut, S., Ketnawa, S., Chaiwut, P., & Rawdkuen, S. (2009). Biochemical and functional properties of proteins from red kidney, navy and adzuki beans. Asian Journal of Food and Agro-Industry, 2(4), 493–504.Google Scholar
  55. Salcedo, J. M. (2008). Regeneration guidelines: Common bean. In M. E. Dulloo, I. Thormann, M. A. Jorge, & J. Hanson (Eds.), Crop specific regeneration guidelines [CD-ROM] (9 pp). Rome: CGIAR System-wide Genetic Resource Programme.Google Scholar
  56. Savelkoul, F. H., Tamminga, S., Leenars, P. P., Schering, J., & Ter Maat, D. W. (1994). The degradation of lectins, phaseolin and trypsin inhibitors during germination of white kidney beans, Phaseolus vulgaris L. Plant Foods for Human Nutrition, 45, 213–222.CrossRefGoogle Scholar
  57. Sgarbieri, V. C. (1984). Composition and nutritive value of beans (Phaseolus vulgaris L.). In G. H. Bourne (Ed.), Nutritional value of cereal products, beans and starches. World Rev Nutr Diet (pp. 132–198). Basel: Karger.Google Scholar
  58. Shimelis, E. A., & Rakshit, S. K. (2007). Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chemistry, 103, 161–172.  https://doi.org/10.1016/j.foodchem.2006.08.005.CrossRefGoogle Scholar
  59. Siddiq, M., Ravi, R., Harte, J. B., & Dolan, K. D. (2010). Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT - Food Science and Technology, 43, 232–237.  https://doi.org/10.1016/j.lwt.2009.07.009.CrossRefGoogle Scholar
  60. Taylor, P., Sathe, S. K., Deshpande, S. S., Salunkhe, D. K., & Rackis, J. J. (1984). Dry beans of phaseolus. A review. Part 1. Chemical composition. Proteins. C R C Critical Reviews in Food Science and Nutrition, 20(1), 37–41.Google Scholar
  61. Tiwari, B. K., & Singh, N. (2012). Pulse chemistry and technology. Cambridge: Royal Society of Chemistry.Google Scholar
  62. Vidal-Valverde, C., Frias, J., Estrella, I., Gorospe, M. J., Ruiz, R., & Bacon, J. (1994). Effect of processing on some antinutritional factors of lentils. Journal of Agricultural and Food Chemistry, 42(10), 2291–2295.Google Scholar
  63. Wang, N., Hatcher, D. W., Tyler, R. T., Toews, R., & Gawalko, E. J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43, 589–594.  https://doi.org/10.1016/j.foodres.2009.07.012.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations