Advertisement

Pulses pp 27-54 | Cite as

Broad Bean (Faba Bean)

  • Lamia L’HocineEmail author
  • Delphine Martineau-Côté
  • Allaoua Achouri
  • Janitha P. D. Wanasundara
  • Gayani W. Loku Hetti Arachchige
Chapter
  • 72 Downloads

Abstract

Broad bean or faba bean (Vicia faba) is one of the oldest domesticated pulses. This grain legume from the Fabaceae family is nowadays cultivated in almost all regions of the world. Faba bean attracts a growing attention due to nutritional, agronomic and economical advantages. This legume distinguishes itself by a high protein content and a balanced amino acids profile, except for a low level of methionine and cysteine. It is also a rich source of other beneficial nutrients including dietary fibres, minerals and phenolic compounds. It is less prone to develop off-flavours and has low-fat content and light cotyledon colour, which makes it suitable to incorporate in several food matrices to increase protein content and nutritional value. Faba bean use has been, however, restricted due to the presence of antinutrients, such as enzyme inhibitors, phytates, condensed tannins, oligosaccharides, and the pyrimidine glycosides vicine and convicine. The reduction of faba bean antinutrients through breeding or processing techniques such as cooking, fermentation, soaking, germination or use of degrading enzymes has been the task for many studies. This chapter describes current post-harvest processing technologies and their incidence on faba bean nutritional, physicochemical, sensorial properties and product shelf life. It also provides an overview of faba bean utilization and discusses future trends and prospects that can open up new application scenarios and promote fast adaptation, and stable positioning of faba bean in the plant-based food market as one of the most valuable protein resources for both human food and animal feed industries.

Keywords

Broad bean Faba bean Pulse Legume Processing Fractionation Utilization Application Product development 

References

  1. Abdel-Aal, E.-S. M., Ragaee, S., Rabalski, I., Warkentin, T., & Vandenberg, A. (2018). Nutrient content and viscosity of Saskatchewan-grown pulses in relation to their cooking quality. Canadian Journal of Plant Science, 99(1), 67–77.  https://doi.org/10.1139/cjps-2018-0140.CrossRefGoogle Scholar
  2. Akkad, R., Kharraz, E., Han, J., House, J. D., & Curtis, J. M. (2019). Characterisation of the volatile flavour compounds in low and high tannin faba beans (Vicia faba var. minor) grown in Alberta, Canada. Food Research International, 120, 285–294.  https://doi.org/10.1016/j.foodres.2019.02.044.CrossRefPubMedGoogle Scholar
  3. Alghamdi, S. S., Migdadi, H. M., Ammar, M. H., Paull, J. G., & Siddique, K. H. M. (2012). Faba bean genomics: Current status and future prospects. Euphytica, 186(3), 609–624.  https://doi.org/10.1007/s10681-012-0658-4.CrossRefGoogle Scholar
  4. Alonso, R., Aguirre, A., & Marzo, F. (2000). Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry, 68(2), 159–165.  https://doi.org/10.1016/S0308-8146(99)00169-7.CrossRefGoogle Scholar
  5. Amiri Chayjan, R., & Shadidi, B. (2014). Modeling high-moisture Faba bean drying in fixed and semi-fluidized bed conditions. Journal of Food Processing and Preservation, 38(1), 200–211.  https://doi.org/10.1111/j.1745-4549.2012.00766.x.CrossRefGoogle Scholar
  6. Anderson, J. C., Idowu, A. O., Singh, U., & Singh, B. (1994). Physicochemical characteristics of flours of faba bean as influenced by processing methods. Plant Foods for Human Nutrition, 45(4), 371–379.  https://doi.org/10.1007/BF01088087.CrossRefPubMedGoogle Scholar
  7. Aschi, A., Aubert, M., Riah-Anglet, W., Nélieu, S., Dubois, C., Akpa-Vinceslas, M., & Trinsoutrot-Gattin, I. (2017). Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. Applied Soil Ecology, 120, 219–228.  https://doi.org/10.1016/j.apsoil.2017.08.003.CrossRefGoogle Scholar
  8. Baginsky, C., Peña-Neira, T., Cáceres, A., Hernández, T., Estrella, I., Morales, H., & Pertuzé, R. (2013). Phenolic compound composition in immature seeds of fava bean (Vicia faba L.) varieties cultivated in Chile. Journal of Food Composition and Analysis, 31(1), 1–6.  https://doi.org/10.1016/j.jfca.2013.02.003.CrossRefGoogle Scholar
  9. Cai, R., McCurdy, A., & Baik, B.-K. (2002). Textural property of 6 legume curds in relation to their protein constituents. Journal of Food Science, 67(5), 1725–1730.  https://doi.org/10.1111/j.1365-2621.2002.tb08713.x.CrossRefGoogle Scholar
  10. Çalışkantürk Karataş, S., Günay, D., & Sayar, S. (2017). In vitro evaluation of whole faba bean and its seed coat as a potential source of functional food components. Food Chemistry, 230, 182–188.  https://doi.org/10.1016/j.foodchem.2017.03.037.CrossRefPubMedGoogle Scholar
  11. Cappellini, M. D., & Fiorelli, G. (2008). Glucose-6-phosphate dehydrogenase deficiency. The Lancet, 371(9606), 64–74.  https://doi.org/10.1016/S0140-6736(08)60073-2.CrossRefGoogle Scholar
  12. Cardador-Martínez, A., Maya-Ocaña, K., Ortiz-Moreno, A., Herrera-Cabrera, B. E., Dávila-Ortiz, G., Múzquiz, M., Martín-Pedrosa, M., Burbano, C., Cuadrado, C., & Jiménez-Martínez, C. (2012). Effect of roasting and boiling on the content of Vicine, Convicine and L-3,4-dihydroxyphenylalanine in Vicia faba L. Journal of Food Quality, 35(6), 419–428.  https://doi.org/10.1111/jfq.12006.CrossRefGoogle Scholar
  13. Cepeda, E., Villarán, M. C., & Aranguiz, N. (1998). Functional properties of faba bean (Vicia faba) protein flour dried by spray drying and freeze drying. Journal of Food Engineering, 36(3), 303–310.  https://doi.org/10.1016/S0260-8774(98)00061-2.CrossRefGoogle Scholar
  14. Chandra-Hioe, M. V., Wong, C. H. M., & Arcot, J. (2016). The potential use of fermented chickpea and faba bean flour as food ingredients. Plant Foods for Human Nutrition, 71(1), 90–95.  https://doi.org/10.1007/s11130-016-0532-y.CrossRefPubMedGoogle Scholar
  15. Chang, P. R. Q., & McCurdy, A. R. (1985). Lipoxygenase activity in fourteen legumes. Canadian Institute of Food Science and Technology Journal, 18(1), 94–96.  https://doi.org/10.1016/S0315-5463(85)71727-0.CrossRefGoogle Scholar
  16. Cheng, M.-H., Rosentrater, K. A., Sekhon, J., Wang, T., Jung, S., & Johnson, L. A. (2019). Economic feasibility of soybean oil production by enzyme-assisted aqueous extraction processing. Food and Bioprocess Technology, 12(3), 539–550.  https://doi.org/10.1007/s11947-018-2228-9.CrossRefGoogle Scholar
  17. Coda, R., Melama, L., Rizzello, C. G., Curiel, J. A., Sibakov, J., Holopainen, U., Pulkkinen, M., & Sozer, N. (2015). Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. International Journal of Food Microbiology, 193, 34–42.  https://doi.org/10.1016/j.ijfoodmicro.2014.10.012.CrossRefPubMedGoogle Scholar
  18. Coda, R., Varis, J., Verni, M., Rizzello, C. G., & Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT-Food Science and Technology, 82, 296–302.  https://doi.org/10.1016/j.lwt.2017.04.062.CrossRefGoogle Scholar
  19. Collado, E., Venzke Klug, T., Martínez-Hernández, G. B., Artés-Hernández, F., Martínez-Sánchez, A., Aguayo, E., Artés, F., Fernández, J. A., & Gómez, P. A. (2019). Nutritional and quality changes of minimally processed faba (Vicia faba L.) beans during storage: Effects of domestic microwaving. Postharvest Biology and Technology, 151, 10–18.  https://doi.org/10.1016/j.postharvbio.2019.01.008.CrossRefGoogle Scholar
  20. Colonna, P., Gallant, D., & Mercier, C. (1980). Pisum sativum and Vicia faba carbohydrates: Studies of fractions obtained after dry and wet protein extraction processes. Journal of Food Science, 45(6), 1629–1639.  https://doi.org/10.1111/j.1365-2621.1980.tb07578.x.CrossRefGoogle Scholar
  21. Crépon, K., Marget, P., Peyronnet, C., Carrouée, B., Arese, P., & Duc, G. (2010). Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Research, 115(3), 329–339.  https://doi.org/10.1016/j.fcr.2009.09.016.CrossRefGoogle Scholar
  22. Cubero, J. I. (1974). On the evolution of Vicia faba L. Theoretical and Applied Genetics, 45(2), 47–51.  https://doi.org/10.1007/BF00283475.CrossRefPubMedGoogle Scholar
  23. Cubero, J. I. (1984). Taxonomy, distribution and evolution of the faba bean and its mild relatives. In J. R. Witcombe & W. Erskine (Eds.), Genetic resources and their exploitation — Chickpeas, faba beans and lentils (pp. 131–144). Dordrecht: Springer Netherlands.  https://doi.org/10.1007/978-94-009-6131-9_12.CrossRefGoogle Scholar
  24. Dubova, L., Alsiņa, I., Ruža, A., & Šenberga, A. (2018). Impact of faba bean (Vicia faba L.) cultivation on soil microbiological activity. Agronomy Research, 16(5), 2016–2025.  https://doi.org/10.15159/AR.18.195.CrossRefGoogle Scholar
  25. Duc, G. (1997). Faba bean (Vicia faba L.). Field Crops Research, 53(1), 99–109.  https://doi.org/10.1016/S0378-4290(97)00025-7.CrossRefGoogle Scholar
  26. Duke, J. A. (1981). Handbook of legumes of world economic importance. New York: Plenum Press.CrossRefGoogle Scholar
  27. Ells, J. E., Hansen, J. C., & Bare, D. (1978). Faba beans (Vicia faba) -A promising new crop for the San Luis Valley. Colorado State University, Agric. Exp. Sta, Fort Collins (Colo.).Google Scholar
  28. Ellwood, S. R., Phan, H. T. T., Jordan, M., Hane, J., Torres, A. M., Avila, C. M., Cruz-Izquierdo, S., & Oliver, R. P. (2008). Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics, 9, 380–380.  https://doi.org/10.1186/1471-2164-9-380.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Erba, D., Angelino, D., Marti, A., Manini, F., Faoro, F., Morreale, F., Pellegrini, N., & Casiraghi, M. C. (2019). Effect of sprouting on nutritional quality of pulses. International Journal of Food Sciences and Nutrition, 70(1), 30–40.  https://doi.org/10.1080/09637486.2018.1478393.CrossRefPubMedGoogle Scholar
  30. Estefania, C. M. C., Ivan, V. T. J., Maria, C. T. L., Rosa-Millan, J. D. L., & Othona, S. S. S. (2018). Physicochemical characteristics, ATR-FTIR molecular interactions and in vitro starch and protein digestion of thermally-treated whole pulse flours. Food Research International, 105, 371–383.  https://doi.org/10.1016/j.foodres.2017.11.029.CrossRefGoogle Scholar
  31. Etemadi, F., Hashemi, M., Randhir, R., ZandVakili, O., & Ebadi, A. (2018). Accumulation of l-DOPA in various organs of faba bean and influence of drought, nitrogen stress, and processing methods on l-DOPA yield. The Crop Journal, 6(4), 426–434.  https://doi.org/10.1016/j.cj.2017.12.001.CrossRefGoogle Scholar
  32. FAO. (2017). Food and agriculture data. Retrieved May 19, 2019, from http://www.fao.org/faostat/en/#home
  33. Felix, M., Lopez-Osorio, A., Romero, A., & Guerrero, A. (2018). Faba bean protein flour obtained by densification: A sustainable method to develop protein concentrates with food applications. LWT, 93, 563–569.  https://doi.org/10.1016/j.lwt.2018.03.078.CrossRefGoogle Scholar
  34. Giménez, M. A., Drago, S. R., De Greef, D., Gonzalez, R. J., Lobo, M. O., & Samman, N. C. (2012). Rheological, functional and nutritional properties of wheat/broad bean (Vicia faba) flour blends for pasta formulation. Food Chemistry, 134(1), 200–206.  https://doi.org/10.1016/j.foodchem.2012.02.093.CrossRefGoogle Scholar
  35. Giménez, M. A., González, R. J., Wagner, J., Torres, R., Lobo, M. O., & Samman, N. C. (2013). Effect of extrusion conditions on physicochemical and sensorial properties of corn-broad beans (Vicia faba) spaghetti type pasta. Food Chemistry, 136(2), 538–545.  https://doi.org/10.1016/j.foodchem.2012.08.068.CrossRefPubMedGoogle Scholar
  36. Gnanasambandam, A., Paull, J., Torres, A., Kaur, S., Leonforte, T., Li, H., Zong, X., Yang, T., & Materne, M. (2012). Impact of molecular technologies on faba bean (Vicia faba L.) breeding strategies. Agronomy, 2(3), 132–166.CrossRefGoogle Scholar
  37. Göl, Ş., Doğanlar, S., & Frary, A. (2017). Relationship between geographical origin, seed size and genetic diversity in faba bean (Vicia faba L.) as revealed by SSR markers. Molecular Genetics and Genomics, 292(5), 991–999.  https://doi.org/10.1007/s00438-017-1326-0.CrossRefPubMedGoogle Scholar
  38. Grosjean, F., Bourdillon, A., Rudeaux, F., Bastianelli, D., Peyronnet, C., Duc, G., & Lacassagne, L. (2000). Feeding value for poultry of isogenic fababeans (Vicia faba L) involving zero-tannin and zero-vicine genes. Sciences et Techniques Avicoles, (32), 17–23.Google Scholar
  39. Gugger, E. T., Galuska, P., & Tremaine, A. (2016). Legume-based dairy substitute and consumable products. US Patent 2016/0309732 A1 27 Oct 2016.Google Scholar
  40. Hadnadjev, M., Dapčević Hadnađev, T., Pojić, M., Šarić, B., Mišan, A., Jovanov, P., & Sakač, M. (2017). Progress in vegetable proteins isolation techniques: A review. Food and Feed Research, 44, 11–21.  https://doi.org/10.5937/FFR1701011H.CrossRefGoogle Scholar
  41. Hagag, A. A., Badraia, I. M., Elfarargy, M. S., Elmageed, M. M. A., & Abo-Ali, E. A. (2018). Study of glucose-6-phosphate dehydrogenase deficiency: 5 years retrospective Egyptian study. Endocrine, Metabolic and Immune Disorders - Drug Targets, 18(2), 155–162.  https://doi.org/10.2174/1871530317666171003160350.CrossRefPubMedGoogle Scholar
  42. Haladjian, N., Fayad, R., Toufeili, I., Shadarevian, S., Sidahmed, M., Baydoun, E., & Karwe, M. (2003). pH, temperature and hydratation kinetics of faba beans (Vicia Faba L.). Journal of Food Processing & Preservation, 27(1), 9–20.  https://doi.org/10.1111/j.1745-4549.2003.tb00497.x.CrossRefGoogle Scholar
  43. Hefni, M. E., Shalaby, M. T., & Witthöft, C. M. (2015). Folate content in faba beans (Vicia faba L.)-effects of cultivar, maturity stage, industrial processing, and bioprocessing. Food Science & Nutrition, 3(1), 65–73.  https://doi.org/10.1002/fsn3.192.CrossRefGoogle Scholar
  44. Hejdysz, M., Kaczmarek, S. A., & Rutkowski, A. (2016). Extrusion cooking improves the metabolisable energy of faba beans and the amino acid digestibility in broilers. Animal Feed Science and Technology, 212, 100–111.  https://doi.org/10.1016/j.anifeedsci.2015.12.008.CrossRefGoogle Scholar
  45. Hemery, Y., Holopainen, U., Lampi, A.-M., Lehtinen, P., Nurmi, T., Piironen, V., Edelmann, M., & Rouau, X. (2011). Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. Journal of Cereal Science, 53(1), 9–18.  https://doi.org/10.1016/j.jcs.2010.06.014.CrossRefGoogle Scholar
  46. Hernández-Infante, M., Sousa, V., Montalvo, I., & Tena, E. (1998). Impact of microwave heating on hemagglutinins, trypsin inhibitors and protein quality of selected legume seeds. Plant Foods for Human Nutrition, 52(3), 199–208.  https://doi.org/10.1023/A:1008033610737.CrossRefPubMedGoogle Scholar
  47. Hood-Niefer, S. D., Warkentin, T. D., Chibbar, R. N., Vandenberg, A., & Tyler, R. T. (2012). Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and faba bean. Journal of the Science of Food and Agriculture, 92(1), 141–150.  https://doi.org/10.1002/jsfa.4552.CrossRefPubMedGoogle Scholar
  48. Jamalian, J. (1999). Removal of favism-inducing factors vicine and convicine and the associated effects on the protein content and digestibility of faba beans (Vicia faba L)†. Journal of the Science of Food and Agriculture, 79(13), 1909–1914.  https://doi.org/10.1002/(SICI)1097-0010(199910)79:13<1909::AID-JSFA454>3.0.CO;2-H.CrossRefGoogle Scholar
  49. Jambunathan, R., Blain, H. L., Dhindsa, K. S., Hussein, L. A., Kogure, K., Li-Juan, L., & Youssef, M. M. (1994). Diversifying use of cool season food legumes through processing. In F. J. Muehlbauer & W. J. Kaiser (Eds.), Expanding the production and use of cool season food legumes: A global perspective of persistent constraints and of opportunities and strategies for further increasing the productivity and use of pea, lentil, faba bean, chickpea and grasspea in different farming systems (pp. 98–112). Dordrecht: Springer Netherlands.  https://doi.org/10.1007/978-94-011-0798-3_4CrossRefGoogle Scholar
  50. Jiang, Z. Q., Pulkkinen, M., Wang, Y. J., Lampi, A. M., Stoddard, F. L., Salovaara, H., Piironen, V., & Sontag-Strohm, T. (2016). Faba bean flavour and technological property improvement by thermal pre-treatments. LWT - Food Science & Technology, 68, 295–305.  https://doi.org/10.1016/j.lwt.2015.12.015.CrossRefGoogle Scholar
  51. Jung, S., Lamsal, B. P., Stepien, V., Johnson, L. A., & Murphy, P. A. (2006). Functionality of soy protein produced by enzyme-assisted extraction. Journal of the American Oil Chemists’ Society, 83(1), 71–78.  https://doi.org/10.1007/s11746-006-1178-y.CrossRefGoogle Scholar
  52. Karki, B., Lamsal, B. P., Grewell, D., Pometto, A. L., III, van Leeuwen, J., Khanal, S. K., & Jung, S. (2009). Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. Journal of the American Oil Chemists’ Society, 86(10), 1021–1028.  https://doi.org/10.1007/s11746-009-1433-0.CrossRefGoogle Scholar
  53. Khalil, A. H., & Mansour, E. H. (1995). The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chemistry, 54(2), 177–182.  https://doi.org/10.1016/0308-8146(95)00024-D.CrossRefGoogle Scholar
  54. Khan, M. A., Ammar, M. H., Migdadi, H. M., El-Harty, E. H., Osman, M. A., Farooq, M., & Alghamdi, S. S. (2015). Comparative nutritional profiles of various faba bean and chickpea genotypes. International Journal of Agriculture and Biology, 17(3), 449–457.  https://doi.org/10.17957/IJAB/17.3.14.990.CrossRefGoogle Scholar
  55. Khazaei, H., Purves, R. W., Hughes, J., Link, W., O’Sullivan, D. M., Schulman, A. H., Björnsdotter, E., Geu-Flores, F., Nadzieja, M., Andersen, S. U., Stougaard, J., Vandenberg, A., & Stoddard, F. L. (2019). Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends in Food Science and Technology, 91, 549–556.  https://doi.org/10.1016/j.tifs.2019.07.051.CrossRefGoogle Scholar
  56. Kumar, S. P. J., Prasad, S. R., Banerjee, R., Agarwal, D. K., Kulkarni, K. S., & Ramesh, K. V. (2017). Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal, 11, 9–9.  https://doi.org/10.1186/s13065-017-0238-8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lafarga, T., Villaró, S., Bobo, G., Simó, J., & Aguiló-Aguayo, I. (2019). Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. International Journal of Food Science & Technology, 54(5), 1816–1823.  https://doi.org/10.1111/ijfs.14082.CrossRefGoogle Scholar
  58. Laleg, K., Salles, J., Berry, A., Giraudet, C., Patrac, V., Guillet, C., Denis, P., Tessier, F. J., Guilbaud, A., Howsam, M., Boirie, Y., Micard, V., & Walrand, S. (2019). Nutritional evaluation of mixed wheat-faba bean pasta in growing rats: Impact of protein source and drying temperature on protein digestibility and retention. The British Journal of Nutrition, 121(5), 496–507.  https://doi.org/10.1017/S0007114518003586.CrossRefGoogle Scholar
  59. Lang, L. J., Yu, Z. H., Zheng, Z. J., Xu, M. S., Ying, H. Q. (1993). Faba bean in China: State-of-the-art review. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo.Google Scholar
  60. Li, L., Yuan, T. Z., Setia, R., Raja, R. B., Zhang, B., & Ai, Y. (2019). Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches. Food Chemistry, 276, 599–607.  https://doi.org/10.1016/j.foodchem.2018.10.064.CrossRefPubMedGoogle Scholar
  61. Li, Z., Dong, L., Huang, Q., & Wang, X. (2016). Bacterial communities and volatile compounds in Doubanjiang, a Chinese traditional red pepper paste. Journal of Applied Microbiology, 120(6), 1585–1594.  https://doi.org/10.1111/jam.13130.CrossRefPubMedGoogle Scholar
  62. Liu, J.-J., Gasmalla, M. A. A., Li, P., & Yang, R. (2016). Enzyme-assisted extraction processing from oilseeds: Principle, processing and application. Innovative Food Science and Emerging Technologies, 35, 184–193.  https://doi.org/10.1016/j.ifset.2016.05.002.CrossRefGoogle Scholar
  63. Lizarazo, C. I., Lampi, A., Jingwei, L., Sontag-Strohm, T., Piironen, V., & Stoddard, F. L. (2015). Nutritive quality and protein production from grain legumes in a boreal climate. Journal of the Science of Food and Agriculture, 95(10), 2053–2064.  https://doi.org/10.1002/jsfa.6920.CrossRefPubMedGoogle Scholar
  64. Lopez, H. W., Leenhardt, F., Coudray, C., & Remesy, C. (2002). Minerals and phytic acid interactions: Is it a real problem for human nutrition? International Journal of Food Science & Technology, 37(7), 727–739.  https://doi.org/10.1046/j.1365-2621.2002.00618.x.CrossRefGoogle Scholar
  65. Luo, Y., & Xie, W. (2014). Effect of soaking and sprouting on iron and zinc availability in green and white faba bean (Vicia faba L.). Journal of Food Science and Technology, 51(12), 3970–3976.  https://doi.org/10.1007/s13197-012-0921-7.CrossRefPubMedGoogle Scholar
  66. Martin, L., Skinner, C., & Marriott, R. J. (2015). Supercritical extraction of oil seed rape: Energetic evaluation of process scale. The Journal of Supercritical Fluids, 105, 55–59.  https://doi.org/10.1016/j.supflu.2015.04.017.CrossRefGoogle Scholar
  67. Martínez-Velasco, A., Lobato-Calleros, C., Hernández-Rodríguez, B. E., Román-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry, 44, 97–105.  https://doi.org/10.1016/j.ultsonch.2018.02.007.CrossRefPubMedGoogle Scholar
  68. Mattila, P., Mäkinen, S., Eurola, M., Jalava, T., Pihlava, J. M., Hellström, J., & Pihlanto, A. (2018). Nutritional value of commercial protein-rich plant products. Plant Foods for Human Nutrition, 73(2), 108–115.  https://doi.org/10.1007/s11130-018-0660-7.CrossRefPubMedGoogle Scholar
  69. McCurdy, S. M., & Knipfel, J. E. (1990). Investigation of faba bean protein recovery and application to pilot scale processing. Journal of Food Science, 55(4), 1093–1094.  https://doi.org/10.1111/j.1365-2621.1990.tb01606.x.CrossRefGoogle Scholar
  70. McDonald, B. E. (1974). In: First National Faba bean Conference, Winnipeg, Manitoba (Canada), 21–22 February 1974.Google Scholar
  71. McMillan, D. C., Bolchoz, L. J. C., & Jollow, D. J. (2001). Favism: Effect of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate shunt activity, morphology, and membrane skeletal proteins. Toxicological Sciences, 62(2), 353–359.  https://doi.org/10.1093/toxsci/62.2.353.CrossRefPubMedGoogle Scholar
  72. Mehrabi Kooshki, M., Moradi, A., Balouchi, H., & Amiri Fahliani, R. (2018). Evaluation of the germination performance and biochemical indices of faba bean (Vicia faba L.) seeds stored at different temperatures and moisture contents. Journal of Plant Process and Function, 7(25), 17–28.Google Scholar
  73. Meijer, M. M. T., Ogink, J. J. M., & van Gelder, W. M. J. (1994). Technological-scale dehulling process to improve the nutritional value of faba beans. Animal Feed Science and Technology, 46(1), 1–10.  https://doi.org/10.1016/0377-8401(94)90060-4.CrossRefGoogle Scholar
  74. Millar, K. A., Barry-Ryan, C., Burke, R., Hussey, K., McCarthy, S., & Gallagher, E. (2017). Effect of pulse flours on the physiochemical characteristics and sensory acceptance of baked crackers. International Journal of Food Science and Technology, 52(5), 1155–1163.  https://doi.org/10.1111/ijfs.13388.CrossRefGoogle Scholar
  75. Morad, M. M., Leung, H. K., Hsu, D. L., & Finney, P. L. (1980). Effect of germination on physicochemical and bread-baking properties of yellow pea, lentil, and faba bean flours and starches. Cereal Chemistry, 6, 390–396.Google Scholar
  76. Multari, S., Stewart, D., & Russell, W. R. (2015). Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Comprehensive Reviews in Food Science and Food Safety, 14(5), 511–522.  https://doi.org/10.1111/1541-4337.12146.CrossRefGoogle Scholar
  77. Nasar-Abbas, S. M., Plummer, J. A., Siddique, K. H. M., White, P., Harris, D., & Dods, K. (2008). Cooking quality of faba bean after storage at high temperature and the role of lignins and other phenolics in bean hardening. LWT - Food Science & Technology, 41(7), 1260–1267.  https://doi.org/10.1016/j.lwt.2007.07.017.CrossRefGoogle Scholar
  78. Nasar-Abbas, S. M., Siddique, K. H. M., Plummer, J. A., White, P. F., Harris, D., Dods, K., & D’Antuono, M. (2009). Faba bean (Vicia faba L.) seeds darken rapidly and phenolic content falls when stored at higher temperature, moisture and light intensity. LWT - Food Science & Technology, 42(10), 1703–1711.  https://doi.org/10.1016/j.lwt.2009.05.013.CrossRefGoogle Scholar
  79. Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J.-B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446–2458.  https://doi.org/10.1002/fsn3.846.CrossRefGoogle Scholar
  80. Nkhoma, E. T., Poole, C., Vannappagari, V., Hall, S. A., & Beutler, E. (2009). The global prevalence of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. Blood Cells, Molecules & Diseases, 42(3), 267–278.  https://doi.org/10.1016/j.bcmd.2008.12.005.CrossRefGoogle Scholar
  81. Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from Peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10(3), 543–555.  https://doi.org/10.1007/s11947-016-1838-3.CrossRefGoogle Scholar
  82. Olaboro, G., Marquardt, R. R., & Campbell, L. D. (1981). Isolation of the egg weight depressing factor in faba beans (Vicia faba L. var. minor). Journal of the Science of Food and Agriculture, 32(11), 1074–1080.  https://doi.org/10.1002/jsfa.2740321106.CrossRefGoogle Scholar
  83. Ortiz, L. T., Centeno, C., & Treviño, J. (1993). Tannins in faba bean seeds: Effects on the digestion of protein and amino acids in growing chicks. Animal Feed Science and Technology, 41(4), 271–278.  https://doi.org/10.1016/0377-8401(93)90002-2.CrossRefGoogle Scholar
  84. Petitot, M., Barron, C., Morel, M. H., & Micard, V. (2010a). Impact of legume flour addition on pasta structure: Consequences on its in vitro starch digestibility. Food Biophysics, 5(4), 284–299.  https://doi.org/10.1007/s11483-010-9170-3.CrossRefGoogle Scholar
  85. Petitot, M., Boyer, L., Minier, C., & Micard, V. (2010b). Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Research International, 43(2), 634–641.  https://doi.org/10.1016/j.foodres.2009.07.020.CrossRefGoogle Scholar
  86. Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science and Technology, 75, 93–104.  https://doi.org/10.1016/j.tifs.2018.03.010.CrossRefGoogle Scholar
  87. Pulkkinen, M., Gautam, M., Lampi, A.-M., Ollilainen, V., Stoddard, F., Sontag-Strohm, T., Salovaara, H., & Piironen, V. (2015). Determination of vicine and convicine from faba bean with an optimized high-performance liquid chromatographic method. Food Research International, 76, 168–177.  https://doi.org/10.1016/j.foodres.2015.05.031.CrossRefGoogle Scholar
  88. Rackis, J. J., Sessa, D. J., & Honig, D. H. (1979). Flavor problems of vegetable food proteins. Journal of the American Oil Chemists’ Society, 56(3), 262–271.  https://doi.org/10.1007/BF02671470.CrossRefGoogle Scholar
  89. Rahman, M., Rehman, A., Chuanqi, X., Xing Long, Z., Binghai, C., Linbao, J., & Su, H. (2015). Extrusion of feed/feed ingredients and its effect on digestibility and performance of poultry: A review. International Journal of Current Microbiology and Applied Sciences, 4(4), 48–61.Google Scholar
  90. Raikos, V., Neacsu, M., Russell, W., & Duthie, G. (2014). Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH. Food Science and Nutrition, 2(6), 802–810.  https://doi.org/10.1002/fsn3.143.CrossRefPubMedGoogle Scholar
  91. Revilla, I., & Vivar-Quintana, A. M. (2008). Effect of canning process on texture of faba beans (Vicia faba). Food Chemistry, 106(1), 310–314.  https://doi.org/10.1016/j.foodchem.2007.02.046.CrossRefGoogle Scholar
  92. Rizzello, C. G., Losito, I., Facchini, L., Katina, K., Palmisano, F., Gobbetti, M., & Coda, R. (2016). Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Scientific Reports, 6, 32452–32452.  https://doi.org/10.1038/srep32452.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Rosa-Sibakov, N., Heiniö, R.-L., Cassan, D., Holopainen-Mantila, U., Micard, V., Lantto, R., & Sozer, N. (2016). Effect of bioprocessing and fractionation on the structural, textural and sensory properties of gluten-free faba bean pasta. LWT - Food Science & Technology, 67, 27–36.  https://doi.org/10.1016/j.lwt.2015.11.032.CrossRefGoogle Scholar
  94. Rubio, L. A., Grant, G., Dewey, P., Bremner, I., & Pusztai, A. (1994). The intestinal true absorption of 65Zn in rats is adversely affected by diets containing a faba bean (Vicia faba L.) nonstarch polysaccharide fraction. The Journal of Nutrition, 124(11), 2204–2211.  https://doi.org/10.1093/jn/124.11.2204.CrossRefPubMedGoogle Scholar
  95. Santos, C. S., Carbas, B., Castanho, A., Bronze, M. R., Serrano, C., Vasconcelos, M. W., Patto, M. C. V., & Brites, C. (2018). Relationship between seed traits and pasting and cooking behaviour in a pulse germplasm collection. Crop and Pasture Science, 69(9), 892–903.  https://doi.org/10.1071/CP18205.CrossRefGoogle Scholar
  96. Sari, Y. W., Bruins, M. E., & Sanders, J. P. M. (2013). Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products, 43, 78–83.  https://doi.org/10.1016/j.indcrop.2012.07.014.CrossRefGoogle Scholar
  97. Schutyser, M. A. I., Pelgrom, P. J. M., van der Goot, A. J., & Boom, R. M. (2015). Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science and Technology, 45(2), 327–335.  https://doi.org/10.1016/j.tifs.2015.04.013.CrossRefGoogle Scholar
  98. Schuurman, M., van Waardenburg, D., Costa, J. D., Niemarkt, H., & Leroy, P. (2009). Severe hemolysis and methemoglobinemia following fava beans ingestion in glucose-6-phosphatase dehydrogenase deficiency—Case report and literature review. European Journal of Pediatrics, 168(7), 779–782.  https://doi.org/10.1007/s00431-009-0952-x.CrossRefPubMedGoogle Scholar
  99. Senberga, A., Dubova, L., Alsina, I., & Strauta, L. (2017). Rhizobium sp. - a potential tool for improving protein content in peas and faba beans. Rural Sustainability Research, 37(332), 2–9.  https://doi.org/10.1515/plua-2017-0001.CrossRefGoogle Scholar
  100. Setia, R., Dai, Z., Nickerson, M. T., Sopiwnyk, E., Malcolmson, L., & Ai, Y. (2019). Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Research International, 122, 263.  https://doi.org/10.1016/j.foodres.2019.04.021.CrossRefPubMedGoogle Scholar
  101. Sharma, A., & Sehgal, S. (1992). Effect of domestic processing, cooking and germination on the trypsin inhibitor activity and tannin content of faba bean (Vicia faba). Plant Foods for Human Nutrition, 42(2), 127–133.  https://doi.org/10.1007/BF02196465.CrossRefPubMedGoogle Scholar
  102. Shi, L., Arntfield, S. D., & Nickerson, M. (2018). Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Research International, 107, 660–668.  https://doi.org/10.1016/j.foodres.2018.02.056.CrossRefPubMedGoogle Scholar
  103. Siah, S., Konczak, I., Wood, J. A., Agboola, S., & Blanchard, C. L. (2014). Effects of roasting on phenolic composition and in vitro antioxidant capacity of Australian grown faba beans (Vicia faba L.). Plant Foods for Human Nutrition, 69(1), 85–91.  https://doi.org/10.1007/s11130-013-0400-y.CrossRefPubMedGoogle Scholar
  104. Singh, R. K., Bohra, N., & Sharma, L. (2019). Valorizing faba bean for animal feed supplements via biotechnological approach: Opinion. Biocatalysis and Agricultural Biotechnology, 17, 366–368.  https://doi.org/10.1016/j.bcab.2018.12.020.CrossRefGoogle Scholar
  105. Singhal, A., Stone, A. K., Vandenberg, A., Tyler, R., & Nickerson, M. T. (2016). Effect of genotype on the physicochemical and functional attributes of faba bean (Vicia faba L.) protein isolates. Food Science and Biotechnology, 25(6), 1513–1522.  https://doi.org/10.1007/s10068-016-0235-z.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Sözer, N. (2014). Gluten-free faba bean for bread and pasta. Retrieved May 19, 2019, from https://www.vttresearch.com/media/news/gluten-free-faba-bean-for-bread-and-pasta
  107. Tabtabaei, S., Vitelli, M., Rajabzadeh, A. R., & Legge, R. L. (2017). Analysis of protein enrichment during single- and multi-stage tribo-electrostatic bioseparation processes for dry fractionation of legume flour. Separation and Purification Technology, 176, 48–58.  https://doi.org/10.1016/j.seppur.2016.11.050.CrossRefGoogle Scholar
  108. Tazrart, K., Lamacchia, C., Zaidi, F., & Haros, M. (2016). Nutrient composition and in vitro digestibility of fresh pasta enriched with Vicia faba. Journal of Food Composition and Analysis, 47, 8–15.  https://doi.org/10.1016/j.jfca.2015.12.007.CrossRefGoogle Scholar
  109. Tiwari, A., & Jha, S. K. (2017). Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks - An overview. International Journal of Food Studies, 6, 113–128.  https://doi.org/10.7455/ijfs/6.1.2017.a10.CrossRefGoogle Scholar
  110. Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC, Trends in Analytical Chemistry, 71, 100–109.  https://doi.org/10.1016/j.trac.2015.04.013.CrossRefGoogle Scholar
  111. Torres, A. M., Avila, C. M., Gutierrez, N., Palomino, C., Moreno, M. T., & Cubero, J. I. (2010). Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Research, 115(3), 243–252.  https://doi.org/10.1016/j.fcr.2008.12.002.CrossRefGoogle Scholar
  112. Turco, I., Ferretti, G., & Bacchetti, T. (2016). Review of the health benefits of faba bean (Vicia faba L.) polyphenols. Journal of Food and Nutrition Research, 55(4), 283–293.Google Scholar
  113. Vilariño, M., Métayer, J. P., Crépon, K., & Duc, G. (2009). Effects of varying vicine, convicine and tannin contents of faba bean seeds (Vicia faba L.) on nutritional values for broiler chicken. Animal Feed Science and Technology, 150(1), 114–121.  https://doi.org/10.1016/j.anifeedsci.2008.08.001.CrossRefGoogle Scholar
  114. Vioque, J., Alaiz, M., & Girón-Calle, J. (2012). Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry, 132(1), 67–72.  https://doi.org/10.1016/j.foodchem.2011.10.033.CrossRefPubMedGoogle Scholar
  115. Waller, D. G., & Sampson, A. P. (2018). 24—Extrapyramidal movement disorders and spasticity. In D. G. Waller & A. P. Sampson (Eds.), Medical pharmacology and therapeutics (5th ed., pp. 325–336). Elsevier.  https://doi.org/10.1016/B978-0-7020-7167-6.00024-5.CrossRefGoogle Scholar
  116. Wang, J., Zhao, J., de Wit, M., Boom, R. M., & Schutyser, M. A. I. (2016). Lupine protein enrichment by milling and electrostatic separation. Innovative Food Science and Emerging Technologies, 33, 596–602.  https://doi.org/10.1016/j.ifset.2015.12.020.CrossRefGoogle Scholar
  117. Wang, Y., Sorvali, P., Laitila, A., Maina, N. H., Coda, R., & Katina, K. (2018). Dextran produced in situ as a tool to improve the quality of wheat-faba bean composite bread. Food Hydrocolloids, 84, 396–405.  https://doi.org/10.1016/j.foodhyd.2018.05.042.CrossRefGoogle Scholar
  118. Warsame, A. O., O’Sullivan, D. M., & Tosi, P. (2018). Seed storage proteins of faba bean (Vicia faba L): Current status and prospects for genetic improvement. Journal of Agricultural and Food Chemistry, 66(48), 12617–12626.  https://doi.org/10.1021/acs.jafc.8b04992.CrossRefPubMedGoogle Scholar
  119. Wei, X. (2019). Effects of short-term germination and autoclaving on selected compounds in faba bean and faba bean application in low-fat pork bologna (M.Sc. Thesis, University of Saskatchewan).Google Scholar
  120. Weihua, X., Miao, Z., Jing, L., Chuanxiu, X., & Yuwei, L. (2015). Effects of phytase and tannase on in vivo nutritive utilisation of faba bean (Vicia faba L.) flour. International Food Research Journal, 22(4), 1550–1556.Google Scholar
  121. Xie, W.-H., Jin, X.-X., Wang, Q., & He, Y.-J. (2014). Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes. CyTA - Journal of Food, 12(1), 22–26.  https://doi.org/10.1080/19476337.2013.782071.CrossRefGoogle Scholar
  122. Xu, Y., Coda, R., Shi, Q., Tuomainen, P., Katina, K., & Tenkanen, M. (2017). Exopolysaccharides production during the fermentation of soybean and fava bean flours by Leuconostoc mesenteroides DSM 20343. Journal of Agricultural and Food Chemistry, 65(13), 2805–2815.  https://doi.org/10.1021/acs.jafc.6b05495.CrossRefPubMedGoogle Scholar
  123. Yang, J., Liu, G., Zeng, H., & Chen, L. (2018). Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties. Food Hydrocolloids, 83, 275–286.  https://doi.org/10.1016/j.foodhyd.2018.05.020.CrossRefGoogle Scholar
  124. Youssef, M. M., & Bushuk, W. (1986). Breadmaking properties of composite flours of wheat and faba bean protein preparations. Cereal Chem, 63(4), 357–361.Google Scholar
  125. Yu-Wei, L., & Wei-Hua, X. (2013). Effect of different processing methods on certain antinutritional factors and protein digestibility in green and white faba bean (Vicia faba L.). CyTA - Journal of Food, 11(1), 43–49.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lamia L’Hocine
    • 1
    Email author
  • Delphine Martineau-Côté
    • 1
  • Allaoua Achouri
    • 1
  • Janitha P. D. Wanasundara
    • 2
  • Gayani W. Loku Hetti Arachchige
    • 2
  1. 1.Agriculture and Agri-Food CanadaSaint-Hyacinthe Research and Development CentreSaint-HyacintheCanada
  2. 2.Agriculture and Agri-Food CanadaSaskatoon Research and Development CentreSaskatoonCanada

Personalised recommendations