Pulses pp 297-331 | Cite as


  • Dadasaheb D. Wadikar
  • Rejaul Hoque Bepary


Ricebean [Vigna umbellata (Thumb.), previously Phaseolus calcaratus] is a nonconventional and underutilized bean and an important crop for the generation of livelihood for poor rural and tribal farmers of South and Southeast Asia. Ricebean has a rich genetic diversity and high agricultural and nutritional potential in terms of being able to grow well in comparatively poor soils in hot and humid climates and resistance to storage pests and serious diseases. It is mainly grown as a crop in India, Philippines, China, Burma, Malaysia, Korea, Indonesia, Fiji, Sri Lanka, Mauritius, Sierra Leone, Ghana, Zaire, Tanganyika, Jamaica, Haiti, and Mexico and also to a limited extent in the West Indies, USA, Queensland (Australia), and East Africa. In India, it is cultivated mainly as a rainfed crop in the Northeastern Hills, West Bengal, Sikkim Hills, Western and Eastern Ghats Hills, Eastern peninsular tract (parts of Orissa), the Chhota-nagpur region in Western Himalaya in the Kumaon hills (U.P.), and in the Chamba region of Himachal Pradesh. Ricebean is also known as climbing mountain bean, mambi bean, oriental bean, and Beziamah in the Assamese language. Ricebean seeds have a smooth shiny surface, are slender to oblong in shape, 6–8 mm in length, 3–5 mm in width, 3–4 mm thick; rounded at both ends and with a concave, straight, or protruding hilum. The proportion of cotyledon, testa, and embryo in ricebean ranges from 88% to 90%, 7% to 9%, and 0.3% to 0.5%, respectively. Ricebean is a carbohydrate-rich grain with about 20% protein and low levels of fat content. It has high-quality protein with all essential amino acids in a balanced manner. The starch of ricebean has the lowest glycemic index (GI) compared to other beans such as mung bean, pea, pigeon pea, soybean, and cowpea. Ricebean has higher levels of potassium, calcium, iron, and zinc with better bioavailability for calcium and zinc. It is low in oligosaccharides (flatulence-producing saccharides such as raffinose, stachyose, verbascose, and ajugose) content than other pulses (Bepary andQ1 Wadikar, Journal of Food Science and Technology, 56(3):1655–1662, 2019). The antinutritional factors such as trypsin inhibitor, α-amylase inhibitors, polyphenols, saponin, and phytic acid are greater, although tannin content is low as compared to other commonly consumed pulses. Food and nutritional security from ricebean can only be achieved if proper postharvest management, processing, and value additions are practiced. The postharvest management decides the quality and safety of ricebean grains and its products and the level of postharvest losses. This grain can be processed by using various technologies such as soaking, conventional cooking, microwave cooking, dehulling, germination, roasting, fermentation, extrusion, and flaking which improves the nutritional quality and safety. These processing techniques either alone or in combination can be utilized to develop several traditional as well as new ricebean-based products with higher nutritional quality, safety, and stability.


Ricebean Vigna umbellata Postharvest processing Cooking Functional properties Value addition 


  1. Acharya, B. K. (2008) Cultivation and use of ricebean: A case study of Dang District, Nepal. M. Phil. thesis submitted to University of Bergen, Norway.Google Scholar
  2. Akinyele, I. O., & Akinlosotu, A. (1991). Effect of soaking, dehulling and fermentation on the oligosaccharides and nutrient content of cowpeas (Vigna unguiculata). Food Chemistry, 41(1), 43–53. Scholar
  3. Alajaji, S. A., & El-Adawy, T. A. (2006). Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. Journal of Food Composition and Analysis, 19, 806–812.CrossRefGoogle Scholar
  4. Alonso, R., Aguirre, A., & Marzo, F. (2000). Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry, 68, 159–165.CrossRefGoogle Scholar
  5. Alonso, R., Rubio, L. A., Muzquiz, M., & Marzo, F. (2001). The effect extrusion cooking on mineral bioavailability in pea and kidney bean meals. Animal Feed Science and Technology, 94, 1–13.CrossRefGoogle Scholar
  6. Andersen, P., Kumar, N., & Acharya, B. P. (2009). Food security through ricebean research in India and Nepal (FOSRIN). Report 5. In P. A. Hollington (Ed.), Ricebean food preparation and diets. Bergen: Department of Geography, Universitet Bergen and Bangor, Wales, UK, CAZS Natural Resources, College of Natural Sciences, Bangor University.Google Scholar
  7. Anuonye, J. C., Jigam, A. A., & Ndaceko, G. (2012). Effects of extrusion-cooking on the nutrient and anti-nutrient composition of pigeon pea and unripe plantain blends. Journal of Applied Pharmaceutical Science, 2(5), 158–162.Google Scholar
  8. Arora, R. K., Chandel, K. P. S., Joshi, B. S., & Pant, K. C. (1980). Rice bean: Tribal pulse of eastern-India. Economic Botany, 34(3), 260–263.CrossRefGoogle Scholar
  9. Augustin, J., Beck, C. B., Kalbfleish, G., Kagel, L. C., & Matthews, R. H. (1981). Variation in the vitamin and mineral content of raw and cooked commercial Phaseolus vulgaris classes. Journal of Food Science, 46, 1701–1706.CrossRefGoogle Scholar
  10. Awasthi, C. P., Thakur, M., Dua, R. P., & Dhaliwal, Y. S. (2011). Biochemical evaluation of some promising varieties/genotypes of rice bean [Vigna umbellata (Thunb.; Ohwi and Ohashi)]. Indian Journal of Agricultural Biochemistry, 24(1), 39–42.Google Scholar
  11. Banerjee, S., Rohatgi, K., & Lahiri, S. (1954). Pantothenic acid, folic acid, biotin and niacin contents of germinated pulses. Journal of Food Science, 19(1–6), 134–137. Scholar
  12. Barampama, Z., & Simard, R. E. (1995). Effects of soaking, cooking and fermentation on composition, in vitro starch digestibility and nutritive value of common beans. Plant Foods for Human Nutrition, 48, 349–365.PubMedCrossRefGoogle Scholar
  13. Baruah, D. K., Das, M., & Bhattacharyya, R. (2018a). Formulation and quality evaluation of ricebean (Vigna umbellata) based convenient food multi mixes. International Journal of Home Science, 4(2), 216–221.Google Scholar
  14. Baruah, D. K., Das, M., & Sharma, R. K. (2018b). Nutritional and microbiological evaluation of ricebean (Vigna umbellata) based probiotic food multi mix using Lactobacillus plantarum and Lactobacillus rhamnosus. Journal of Probiotics & Health, 6, 200. Scholar
  15. Bepary, R. H., & Wadikar, D. D. (2018). Optimization of ricebean cooking parameters for the production of instant/convenience foods using response surface methodology. Journal of Food Processing Preservation, 42(3), e13547.CrossRefGoogle Scholar
  16. Bepary, R. H., & Wadikar, D. D. (2019). HPLC profiling of flatulence and non-flatulence saccharides in eleven ricebean (Vigna umbellata) varieties from north-East India. Journal of Food Science and Technology, 56(3), 1655–1662.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bepary, R. H., Wadikar, D. D., & Patki, P. E. (2016). Ricebean: Nutritional vibrant bean of Himalayan belt (north East India). Nutrition and Food Science, 46(3), 412–431.CrossRefGoogle Scholar
  18. Bepary, R. H., Wadikar, D. D., Neog, S. B., & Patki, P. E. (2017). Studies on physicochemical and cooking characteristics of ricebean varieties grown in NE region of India. Journal of Food Science and Technology, 54(4), 973–986.PubMedCrossRefGoogle Scholar
  19. Bepary, R. H., Wadikar, D. D., & Patki, P. E. (2018a). Engineering properties of ricebean varieties from north East India. Journal of Agricultural Engineering, 55(3), 34–44.Google Scholar
  20. Bepary, R. H., Wadikar, D. D., Semwal, A. D., & Sharma, G. K. (2018b). Optimization of microwave cooking condition of ricebean (Vigna umbellata) by using response surface methodology. Presented in International Conference on ‘Recent Advances in Food Processing Technology,’ 17–19 August, 2018, at IIFPT, Thanjavur, Tamil Nadu.Google Scholar
  21. Bepary, R. H., Wadikar, D. D., & Patki, P. E. (2019a). Analysis of eight water soluble vitamins in ricebean (Vigna umbellata) varieties from NE India by reverse phase-HPLC. Journal of Food Measurement and Characterization, 13(2), 1287–1298.CrossRefGoogle Scholar
  22. Bepary, R. H., Wadikar, D. D., Vasudish, C. R., Semwal, A. D., & Sharma, G. K. (2019b). Optimisation and evaluation of ricebean (Vigna umbellata) extrusion process for downstream food processability. Defence Life Science Journal, 4(2), 130–139.CrossRefGoogle Scholar
  23. Bishnoi, S., & Khetarpaul. (1993). Effect of domestic processing and cooking methods on in vitro starch digestibility of different pea cultivars (Pisum sativum). Food Chemistry, 47, 177–182.CrossRefGoogle Scholar
  24. Boateng, J., Verghese, M., Walker, L. T., & Ogutu, S. (2008). Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT - Food Science and Technology, 41, 1541–1547.CrossRefGoogle Scholar
  25. Buergelt, D., von Oppen, M., & Yadavendra, J. P. (2009). Quality parameters in relation to consumer’s preferences in rice bean. In International Conference on Grain Legumes: Quality Improvement, Value Addition and Trade, Kanpur, India, 14–16 February 2009.Google Scholar
  26. Chandel, K. P. S., Joshi, B. S., Arora, R. K., & Pant, K. C. (1978). Rice bean: A new pulse with high potential. Indian Farming, 28(9), 19–22.Google Scholar
  27. Chandel, K. P. S., Arora, R. K., & Pant, K. C. (1988). Rice bean: A potential grain legume (NBPGR Scientific Monograph No. 12). NBPGR, New Delhi.Google Scholar
  28. Chau, C.-F., & Cheung, P. C.-K. (1997). Effect of various processing methods on antinutrients and in vitro digestibility of protein and starch of two Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45, 4773–4776.CrossRefGoogle Scholar
  29. Chukwuma, O. E., Taiwo, O. O., & Boniface, U. V. (2016). Effect of the traditional cooking methods (boiling and roasting) on the nutritional profile of quality protein maize. Journal of Food and Nutrition Sciences, 4(2), 34–40.CrossRefGoogle Scholar
  30. Chung, S. Y., Morr, C. V., & Jen, J. J. (1981). Effect of microwave and conventional cooking on the nutritive value of colossus peas (Vigna unguiculata). Journal of Food Science, 46, 272–273.CrossRefGoogle Scholar
  31. de Carvalho, N. M., & Vieria, R. D. (1996). Rice bean [Vigna umbellata (Thunb.) Ohwi & Ohashi]. In E. Nkowolo & J. Smartt (Eds.), Legumes and oilseeds in nutrition (pp. 222–228). London: Chapman & Hall.CrossRefGoogle Scholar
  32. Deshpande, S. S., Sathe, S. K., Salunkhe, D. K., & Cornforth, D. P. (1982). Effects of dehulling on phytic acid, polyphenols, and enzyme inhibitors of dry beans (Phaseolus vulgaris L.). Journal of Food Science, 47, 1846–1849.CrossRefGoogle Scholar
  33. Du, S., Jiang, H., Yu, X., & Jane, J. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 55(1), 308–313.CrossRefGoogle Scholar
  34. Duhan, A., Khetarpaul, N., & Bishnoi, S. (2002). Content of phytic acid and HCl-extractability of calcium, phosphorus and iron as affected by various domestic processing and cooking methods. Food Chemistry, 78(1), 9–14. Scholar
  35. El Maki, H. B., Samia, R. S. M. A., Idris, W. H., Hassan, A. B., Babiker, E. E., & El Tinay, A. H. (2007). Content of antinutritional factors and HCl-extractability of minerals from white bean (Phaseolus vulgaris) cultivars: Influence of soaking and/or cooking. Food Chemistry, 100, 362–368.CrossRefGoogle Scholar
  36. Feng, D., Shen, Y., & Chavez, E. R. (2003). Effectiveness of different processing methods in reducing hydrogen cyanide content of flaxseed. Journal of Science Food and Agriculture, 83, 836–841.CrossRefGoogle Scholar
  37. Gan, R.-Y., Shah, N. P., Wang, M.-F., Lui, W.-Y., & Corke, H. (2016). Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. International Journal of Food Science and Technology, 51, 875–884.CrossRefGoogle Scholar
  38. Gruner, M., Horvatic, M., Gacic, M., & Banovi, M. (1996). Molar ration of phytic acid and zinc during cereal flake production. Journal of the Science of Food and Agriculture, 70, 355–358.CrossRefGoogle Scholar
  39. Hefni, M., & Witthöft, C. M. (2014). Folate content in processed legume foods commonly consumed in Egypt. LWT - Food Science and Technology, 57(1), 337–343. Scholar
  40. Hira, C. K., Kawar, J. K., Gupta, N., & Kochhar, A. (1988). Cooking quality and nutritional evaluation of the rice bean (Vigna umbellata). Journal of Food Science and Technology, 25(3), 133–136.Google Scholar
  41. Hollington, P. A., Joshi, K. D., Witcombe, J. R., Harris, D., Mueller, R. A. E., Buergelt, D., Andersen, P., Yadavendra, J. P., Kumar, N., Neog, S. B., Bajracharya, J., Shrestha, R., Khadka, K., Gautam, R., Acharya, B. K., & Paudel, I. H. (2010) Food security through ricebean research in India and Nepal (FOSRIN). Final report, April 1 2006–March 31 2010.Google Scholar
  42. Hoppner, K., & Lampi, B. (1993). Pantothenic acid and biotin retention in cooked legumes. Journal of Food Science, 58(5), 1084–1088.CrossRefGoogle Scholar
  43. Ibeanu, V. N., Onyechi, U. A., & Ugwuanyi, G. U. (2012). Nutrient and dietary fibre profile of dehulled and undehulled seeds of sweet princess watermelon (Citrullus lanatus) consumed in Nigeria. International Journal of Basic & Applied Sciences, 12(6), 249–252.Google Scholar
  44. Ijeomah, O. C. (2017). Protein quality and sensory attributes of fonio (Digitaria exilis)/ricebean (Vigna umbellata) based complementary food incorporated with carrot and crayfish. Innovare Journal of Food Science, 5(1), 5–7.Google Scholar
  45. Itagi, H. B. N., Sathyendra Rao, B. V. S., Jayadeep, P. A., & Singh, V. (2012). Functional and anti-oxidant properties of ready-to-eat flakes from various cereals including sorghum and millet. Quality Assurance and Safety of Crops & Foods, 4, 126–133.CrossRefGoogle Scholar
  46. Jayalaxmi, B., Vijayalakshmi, D., Usha, R., Revanna, M. L., Chandru, R., & Gowda, P. H. R. (2016). Effect of different processing methods on proximate, mineral and antinutrient content of lima bean (Phaseolus lunatus) seeds. Legume Research, 39(4), 543–549.Google Scholar
  47. Joshi, K. D., Bhandari, B., Gautam, R., Bajracharya, J., & Hollington, P. A. (2008). Ricebean: A multipurpose underutilised legume, proceeding of 5th Interntional syposium on New crops and uses: Their Role in a Rapidly Changing World ( Edited by J Smartt and N Haq) 3-4 september 2007, University of Southamto, Southampton, pp. 234–248.Google Scholar
  48. Joyner, J. J., & Yadav, B. K. (2015). Microwave assisted dehulling of black gram (Vigna mungo L). Journal of Food Science and Technology, 52(4), 2003–2012. Scholar
  49. Kakati, P., Deka, S. C., Kotoki, D., & Saikia, S. (2010). Effect of traditional methods of processing on the nutrient contents and some antinutritional factors in newly developed cultivars of green gram [Vigna radiata (L.) Wilezek] and black gram [Vigna mungo (L.) Hepper] of Assam. India International Food Research Journal, 17, 377–384.Google Scholar
  50. Kalidass, C., & Mohan, V. R. (2012). Nutritional composition and antinutritional factors of little-known species of Vigna. Tropical and Subtropical Agroecosystems, 15(3), 525–538.Google Scholar
  51. Katoch, R. (2013). Nutritional potential of rice bean (Vigna umbellata): An underutilized legume. Journal of Food Science, 78(1), C8–C16.PubMedCrossRefGoogle Scholar
  52. Kaur, M. (2015). Chemical composition of ricebean (Vigna umbellata): Effect of domestic processing. Indian Journal of Applied Research, 5(4), 311–313.Google Scholar
  53. Kaur, D., & Kapoor, A. C. (1990a). Some antinutritional factors in ricebean (Vigna umbellata): Effects of domestic processing and cooking methods. Food Chemistry, 37(4), 171–179.CrossRefGoogle Scholar
  54. Kaur, D., & Kapoor, A. C. (1990b). Starch and protein digestibility of rice bean (Vigna umbellata): Effects of domestic processing and cooking methods. Food Chemistry, 38(4), 263–272.CrossRefGoogle Scholar
  55. Kaur, D., & Kapoor, A. C. (1992). Nutrient composition and anti-nutritional factors of rice bean (Vigna umbellata). Food Chemistry, 43(2), 19–124.CrossRefGoogle Scholar
  56. Kaur, M., & Kawatra, B. L. (2000). Effect of domestic processing on flatus producing factors in ricebean (Vigna umbellata). Nahrung, 44(6), 447–450.PubMedCrossRefGoogle Scholar
  57. Kaur, M., & Kawatra, B. L. (2002a). Evaluation of iron bioavailability from ricebean (Vigna umbellata) by using anaemic rats. Nutrition Research, 22, 633–640.CrossRefGoogle Scholar
  58. Kaur, M., & Kawatra, B. L. (2002b). Domestic processing on zinc bioavailbility from ricebean (Vigna umbellata) diets. Plant Food for Human Nutrition, 57, 307–318.CrossRefGoogle Scholar
  59. Kaur, M., & Mehta, U. (1993). Effect of partial and full substitution of Bengal gram and black gram dhals with rice bean on essential amino acids and mineral contents of vada and pakora. Journal of Food Science and Technology, 30(6), 454–456.Google Scholar
  60. Kaur, A., Kaur, P., Singh, N., Virdi, A. S., Singh, P., & Rana, J. C. (2013). Grains, starch and protein characteristics of rice bean (Vigna umbellata) grown in Indian Himalaya regions. Food Research International, 54, 102–110.CrossRefGoogle Scholar
  61. Khatoon, N., & Prakash, J. (2004). Nutritional quality of microwave-cooked and pressure-cooked legume. International Journal of Food Sciences and Nutrition, 55(6), 441–448.CrossRefPubMedGoogle Scholar
  62. Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments. 2. Antinutritional factors. LWT - Food Science and Technology, 42, 1113–1118.CrossRefGoogle Scholar
  63. Kii, S. V. M., Wijanarka, A., & Puruhita, T. K. A. (2013). Effect of ricebean flour (Vigna umbellata) and wheat flour mixing variations on physical properties, organoleptic properties and calcium levels of cookies production. Medika Respati, 8(1).Google Scholar
  64. Kik, M. C. (1956). Nutritive value of rice, nutrients in rice bran and rice polish and improvement of protein quality with amino acids. Journal of Agricultural and Food Chemistry, 4(2), 170–172. Scholar
  65. Killeit, U. (1994). Vitamin retention in extrusion cooking. Food Chemistry, 49, 149–155.CrossRefGoogle Scholar
  66. Klein, B. P., Kuo, C. H. Y., & Boyd, G. (1981). Folacin and ascorbic acid retention in fresh raw, microwave, and conventionally cooked spinach. Journal of Food Science, 46(2), 640–641. Scholar
  67. Kon, S., & Sanshuck, D. W. (1981). Phytate content and its effect of cooking quality of beans. Journal of Food Processing & Preservation, 5, 169–178.CrossRefGoogle Scholar
  68. Korus, J., Gumul, D., & Czechowska, K. (2007). Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris L. Food Technology and Biotechnology, 45(2), 139–146.Google Scholar
  69. Lal, R. R., & Verma, P. (2007). Post harvest management of pulses. Kanpur: Indian Institute of Pulses Research.Google Scholar
  70. Lamichhane, B., Ojha, P., & Paudyal, B. (2013). Formulation and quality evaluation of extruded product from composite blend of maize, sorghum and ricebean. Journal of Food Science and Technology Nepal, 8, 40–45.CrossRefGoogle Scholar
  71. Lawal, R. O. (1986). Effect of roasting on the chemical composition of the seeds of Treculia africana. Food Chemistry, 22, 305–314.CrossRefGoogle Scholar
  72. Malhotra, S., Malik, D., & Dhindsa, K. S. (1988). Proximate composition and anti-nutritional factors in rice bean (Vigna umbellata). Plant Foods for Human Nutrition, 38(1), 75–81.PubMedCrossRefGoogle Scholar
  73. Mankotia. (2011). Biochemical evaluation of ricebean (Vigna umbellate (Thunb.) Ohwi and Ohashi) genotypes of Himachal Pradesh. M.Sc. thesis, CSKHP Krishi Vishvavidyalaya, Palampur.Google Scholar
  74. Mohan, R. J., Sangeetha, A., Narasimha, H. V., & Tiwari, B. K. (2011). Post-harvest technology of pulses. In B. K. Tiwari, A. Gowen, & B. McKenna (Eds.), Pulse foods: Processing, quality and nutraceutical applications. London: Academic Press–Elsevier.Google Scholar
  75. Mubarak, A. E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 89, 489–495.CrossRefGoogle Scholar
  76. Mujoo, R., & Ali, S. Z. (1998). Susceptibility of starch to in vitro enzyme hydrolysis in rice: Rice flakes and intermediary products. Lebensmittel-Wissenschaft und Technologie, 31, 114–121.CrossRefGoogle Scholar
  77. Mujoo, R. (1998). Effect of processing conditions on the properties of rice flakes. PhD (Food Science) thesis submitted to University of Mysore.Google Scholar
  78. Mujoo, R., Chandrashekar, A., & Ali, S. Z. (1998). Rice protein aggregation during the flaking process. Journal of Cereal Science, 28, 187–195.CrossRefGoogle Scholar
  79. Mulimani, V. H., & Supriya, D. (1994). Effects of infrared radiation, solar cooking and microwave cooking on alpha-amylase inhibitor in sorghum (Sorghum bicolor L.). Plant Foods for Human Nutrition, 46(3), 231–235. Scholar
  80. Nayak, L. K., & Samuel, D. V. K. (2012). Process optimization for development of instant pigeon pea (Cajanus cajan L.) dal using sodium carbonate pretreatment. Journal of Dairying Foods & Home Sciences, 31(3), 191–194.Google Scholar
  81. Nnanna, I. A., & Phillips, R. D. (1989). Amino acid composition, protein quality and water-soluble vitamin content of germinated cowpeas (Vigna unguiculata). Plant Foods for Human Nutrition, 39, 187–200.PubMedCrossRefGoogle Scholar
  82. Nwanekezi, E. C., Ehirim, F. N., & Arukwe, D. C. (2017). Combined effects of different processing methods on vitamins and antinutrients contents of pigeon pea (Cajanus cajan) flour. Journal of Environmental Science, Toxicology and Food Technology, 11(4), 73–81.CrossRefGoogle Scholar
  83. Oboh, H. A., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M. M., Ayet, G., & Osagie, A. U. (2000). Effect of soaking, cooking and germination on the oligosaccharide content of selected Nigerian legume seeds. Plant Foods for Human Nutrition, 55, 97–110.PubMedCrossRefGoogle Scholar
  84. Ochanda, S. O., Onyango, C. A., Mwasaru, A. M., Ochieng, J. K., & Mathooko, F. M. (2010). Effects of malting and fermentation treatments on group B-vitamins of red sorghum, white sorghum and pearl millets in Kenya. Journal of Applied Biosciences, 34, 2128–2134.Google Scholar
  85. Ohwi, J. (1965). Flora of Japan. Washington, DC: Smithsonian Institution.Google Scholar
  86. Okoye, E. C., Njoku, E. U., & Ugwuanyi, G. R. (2018). Proximate composition, micronutrient contents and acceptability of “Ojojo” from the blends of water yam and ricebean flours. International Journal of Food Sciences and Nutrition, 3(5), 5–10.Google Scholar
  87. Okudu, H. O., & Ojinnaka, M. C. (2017). Effect of soaking time on the nutrient and antinutrient composition of bambara groundnut seeds (Vigna subterranean). African Journal of Food Science and Technology, 8(2), 25–29.Google Scholar
  88. Pal, R. S., Bhartiya, A., Arun Kumar, R., Kant, L., Aditya, J. P., & Bisht, J. K. (2015). Impact of dehulling and germination on nutrients, antinutrients, and antioxidant properties in horsegram. Journal of Food Science and Technology, 53(1), 337–347. Scholar
  89. Parvathi, S., & Kumar, V. J. F. (2006). Value added products from rice bean (Vigna umbellata). Journal of Food Science and Technology, 43(2), 190–193.Google Scholar
  90. Patil, K. B., Chimmad, B. V., & Itagi, S. (2015). Glycemic index and quality evaluation of little millet (Panicum miliare) flakes with enhanced shelf life. Journal of Food Science and Technology, 52(9), 6078–6082. Scholar
  91. Paudel, I. H. (2008). Conservation and commercialization prospect of ricebean landraces in Ramechhap district of Nepal. Kirtipur: Tribhuvan University.Google Scholar
  92. Pawar, V. D., Akkena, M. K., Kotecha, P. M., Thorat, S. S., & Bansode, V. V. (2012). Effect of presoak treatment on cooking characteristics and nutritional functionality of rice bean. Journal of Food Legumes, 25(4), 321–325.Google Scholar
  93. Perera, O. D. A. N., Eashwarage, I. S., & Herath, H. M. T. (2017). Development of dietary fiber rich multi legumes flake mix. Journal of Pharmacognosy & Natural Products, 3, 135. Scholar
  94. Prabhavat, S., Boonyasirikool, P., & Charunuch, C. (1996). Study on the production of snacks from rice bean by twin screw extruder. Kasetsart Journal (Natural Science), 30, 200–210.Google Scholar
  95. Quinteros, A., Farré, R., & Lagarda, M. J. (2003). Effect of cooking on oxalate content of pulses using an enzymatic procedure. International Journal of Food Sciences and Nutrition, 54(5), 373–377.PubMedCrossRefGoogle Scholar
  96. Ramakrishnaiah, N., & Kurien, P. P. (1985). Non-starchy polysaccharides of pigeon pea and their influence on dehulling characteristics. Journal of Food Science and Technology, 22, 429–430.Google Scholar
  97. Randhir, R., Kwon, Y. I., & Shetty, K. (2008). Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Science and Emerging Technologies, 9, 355–364.CrossRefGoogle Scholar
  98. Rani, S., & Khabiruddin, M. (2017). Antioxidant potential of processed Vigna umbellata (L.) seeds: An Indian underutilized legume. International Journal of Chemical Studies, 5(4), 1407–1412.Google Scholar
  99. Rau, D., Murgia, M. L., Rodriguez, M., Bitocchi, E., Bellucci, E., Fois, D., Albani, D., Nanni, L., Gioia, T., Santo, D., Marcolungo, L., Delledonne, M., Attene, G., & Papa, R. (2019). Genomic dissection of pod shattering in common bean: Mutations at non-orthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. The Plant Journal, 97(4), 693. Scholar
  100. Ren, S. C., Liu, Z. L., & Wang, P. (2012). Proximate composition and flavonoids content and in vitro antioxidant activity of 10 varieties of legume seeds grown in China. Journal of Medicinal Plants Research, 6(2), 301–308.Google Scholar
  101. Revilleza, M. J. R., Mendoza, E. M. T., & Raymundo, L. C. (1990). Oligosaccharides in several Philippine indigenous food legumes: Determination, localization and removal. Plant Foods for Human Nutrition, 40(1), 83–93.PubMedCrossRefGoogle Scholar
  102. Rockland, L. B., Miller, C. F., & Hahn, D. M. (1977). Thiamine, pyridoxine, niacin and folacin in quick-cooking beans. Journal of Food Science, 42, 25–28.CrossRefGoogle Scholar
  103. Rodriguez, M. S., & Mendoza, E. M. T. (1991). Nutritional assessment of seed proteins in rice bean [Vigna umbellata (Thumb.) Ohwi and Ohashi]. Plant Foods for Human Nutrition, 41(1), 1–9.PubMedCrossRefGoogle Scholar
  104. Ryland, D., Vaisey-Genser, M., Arntfield, S. D., & Malcolmson, L. J. (2010). Development of a nutritious acceptable snack bar using micronized flaked lentils. Food Research International, 43, 642–649.CrossRefGoogle Scholar
  105. Saharan, K., Khetarpaul, N., & Bishnoi, S. (2001). HCl-extractability of minerals from ricebean and fababean: Influence of domestic processing methods. Innovative Food Science and Emerging Technologies, 2, 323–325.CrossRefGoogle Scholar
  106. Saharan, K., Khetarpaul, N., & Bishnoi, S. (2002). Variability in physicochemical properties and nutrient composition of newly released ricebean and fababean cultivars. Journal of Food Composition and Analysis, 15, 159–167.CrossRefGoogle Scholar
  107. Sahu, B. (2017) Comparative analysis of selected varieties of paddy for suitability of flaking. M.Tech thesis, Indira Gandhi Krishi Vishwavidyalaya, Raipur (Chhattisgarh).Google Scholar
  108. Saikia, P., Sarkar, C. R., & Borua, I. (1999). Chemical composition, anti-nutritional factors and effect of cooking on nutritional quality of rice bean Vigna umbellata (Thunb.) Ohwi and Ohashi. Food Chemistry, 67(4), 347–352.CrossRefGoogle Scholar
  109. Sailaya, Y. S. (1992) Investigated the popping and flaking quality of sorghum cultivars in relation to physicochemical characteristics and in vitro starch and protein digestibility. Thesis submitted to the Andhra Pradesh Agricultural University, pp. 1–13.Google Scholar
  110. Saini, R., & Chopra, A. R. (2012). In vitro plant regeneration via somatic embryogenesis in rice-bean Vigna umbellata (Thunb.) Ohwi and Ohashi: An underutilized and recalcitrant grain legume. Journal of Environmental Research and Development, 6(3), 452–457.Google Scholar
  111. Sánchez-Arteaga, H. M., Urías-Silvas, J. E., Espinosa-Andrews, H., & García-Márquez, E. (2015). Effect of chemical composition and thermal properties on the cooking quality of common beans (Phaseolus vulgaris). CyTA Journal of Food, 13(3), 385–391. Scholar
  112. Sarma, B. K., Singh, M., Gupta, H. S., Singh, G., & Srivastava, L. S. (1995). Studies in rice bean germplasm (Research Bulletin #34). ICAR Research Complex for North East Hill Region, Barapani (Umiam), India.Google Scholar
  113. Sattar, A., Durrani, S. K., Mahmood, F., Ahmad, A., & Khan, I. (1989). Effect of soaking and germination temperatures on selected nutrients and antinutrients of mungbean. Food Chemistry, 34, 111–120.CrossRefGoogle Scholar
  114. Scariot, M. A., Tiburski, G., Júnior, F. W. R., Radünz, L. L., & Meneguzzo, M. R. R. (2017). Moisture content at harvest and drying temperature on bean seed quality. Pesquisa Agropecuária Tropical, 47(1), 93–101. ISSN 1983-4063— Scholar
  115. Sethi, S., Samuel, D. V. K., & Khan, I. (2014). Development and quality evaluation of quick cooking dhal—A convenience product. Journal of Food Science and Technology, 51(3), 595–600. Scholar
  116. Sharma, S. (2014). Nutritional quality, functional properties and value addition of rice bean (Vigna umbellata). PhD thesis, Chaudhary Sarwan Kumar Himachal Pradesh Krishi, Vishvavidyalaya, Palampur, India.Google Scholar
  117. Sharma, R., & Punia, D. (2017). Effect of traditional processing methods on protein digestibility and starch digestibility of field pea (Pisum sativum). International Journal of Food and Nutritional Science, 6(3). e-ISSN 2320-7876
  118. Siddhuraju, P., & Becker, K. (2007). The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chemistry, 101, 10–19.CrossRefGoogle Scholar
  119. Siddhuraju, P., Vijayakumari, K., & Janardhanan, K. (1996). Chemical composition and protein quality of the little-known legume, velvet bean (Mucuna pruriens (L.) DC.). Journal of Agricultural and Food Chemistry, 44, 2636–2641.CrossRefGoogle Scholar
  120. Singh, U. (1993). Protein quality of pigeon pea (Cajanus cajan L.) as influenced by seed polyphenols and cooking process. Plant Foods for Human Nutrition, 43, 171–179.PubMedCrossRefGoogle Scholar
  121. Singh, S. P., Misra, B. K., Chandel, K. P. S., & Pant, K. C. (1980). Major food constituents of rice-bean (Vigna umbellata). Journal of Food Science and Technology, 17(5), 238–240.Google Scholar
  122. Singh, N., Kaur, S., Isono, N., Ichihasshi, Y., Noda, T., Kaur, A., & Rana, J. C. (2012). Diversity in characteristics of starch amongst ricebean (Vigna umbellata) germplasm: Amylopectin structure, granule size distribution, thermal rheology. Food Research International, 46, 194–200.CrossRefGoogle Scholar
  123. Somta, P., Talekar, N., & Srinives, P. (2006). Characterization of Callosobruchus chinensis (L.) resistance in Vigna umbellata (Thunb.) Ohwi & Ohashi. Journal of Stored Products Research, 42, 313–327.CrossRefGoogle Scholar
  124. Sritongtae, B., Sangsukiam, T., Morgan, M. R. A., & Duangmal, K. (2017). Effect of acid pretreatment and the germination period on the composition and antioxidant activity of ricebean (Vigna umbellata). Food Chemistry, 227, 280–288.PubMedCrossRefGoogle Scholar
  125. Tomooka, N., Kaga, A., & Vaughan, D. A. (2006). The Asian vigna (Vigna subgenus Ceratotropis) biodiversity and evolution. In A. K. Sharma & A. Sharma (Eds.), Plant genome: Biodiversity and evolution (pp. 87–126). Enfield: Science Publishers.Google Scholar
  126. Uebersax, M. A., & Muhammad, S. (2013). Postharvest storage quality, packaging and distribution of dry beans. In S. Siddiq Muhammad & M. A. Uebersax (Eds.), Dry beans and pulses production, processing and nutrition (p. 75). Ames: Wiley.Google Scholar
  127. Wadikar, D. D., Bepary, R. H., Semwal, A. D., & Sharma, G. K. (2018). Optimization of process parameters for production of ricebean (Vigna umbellata) flakes by using response surface methodology. Presented at 8th International Food Convention (IFCON 2018), 12–15 Dec 2018, CSIR-CFTRI, Mysore.Google Scholar
  128. Wei, Y., Yan, J., Long, F., & Lu, G. (2015). Vigna umbellata (Thunb.) Ohwi et Ohashi or Vigna angularis (Willd.) Ohwi et Ohashi (Chixiaodou, rice bean). In Y. Liu, Z. Wang, & J. Zhang (Eds.), Dietary Chinese herbs: Chemistry, pharmacology and clinical evidence (pp. 551–560). New York: Springer.CrossRefGoogle Scholar
  129. Wu, G., Ashton, J., Simic, A., Fang, Z., & Johnson, S. K. (2018). Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Food Research International, 103, 509–514.PubMedCrossRefGoogle Scholar
  130. Yadav, S., & Khetarpaul, N. (1994). Some antinutrients and in vitro digestibility of starch and protein. Food Chemistry, 50, 403–406.CrossRefGoogle Scholar
  131. Yang, S. C., Zandstra, T., & van der Poel, A. F. B. (2008). Starch gelatinization and physical quality of pea flakes in canine dinners as affected by soaking, steam treatment and infrared radiation. Journal of Animal Physiology and Animal Nutrition, 92, 310–315.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dadasaheb D. Wadikar
    • 1
  • Rejaul Hoque Bepary
    • 1
  1. 1.DRDO-Defence Food Research LaboratoryMysoreIndia

Personalised recommendations