Pulses pp 245-273 | Cite as


  • Martin MondorEmail author


Pea (Pisum sativum L.) is a major pulse grown worldwide, and Canada is the world’s largest producer of this crop. For 2018–2019 and 2019–2020, respectively, the production forecast was 3.581 × 109 and 4.300 × 109 kg, and the export forecast was 3.200 × 109 and 3.100 × 109 kg (Agriculture and Agri-Food Canada 2019). Peas have high nutritional value with high protein, starch, and fiber contents but low levels of fat and sodium. The chemical composition varies depending on the growing conditions, year, and variety. Furthermore, peas are gluten-free and not genetically modified and are low in allergens and glycemic index scores in comparison with many other cereals and pulses. Peas are generally consumed after being cooked. However, peas are also processed into ingredients, such as flour, protein-enriched ingredients, starch-enriched ingredients, and fibers, that can be used in the industry. Depending on the target application, different postharvest processes can be applied to peas. The most common processes are malting, dehulling, milling, fractionation, extraction, extrusion, and cooking. The basic principles of the aforementioned processes and their impact on the resulting pea ingredients are presented in this book chapter. Development of products from peas is also presented.


Air classification Animal feed Bakery products Bioplastics Extraction Insect repellent Malting Meat products Milling Pea 


  1. Adebiyi, A. P., & Aluko, R. E. (2011). Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, 128, 902–908.CrossRefGoogle Scholar
  2. Agboola, S. O., Mofolasayo, O. A., Watts, B. M., & Aluko, R. E. (2010). Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Research International, 43, 582–588.CrossRefGoogle Scholar
  3. Alonso, R., Orúe, E., Zabalza, M. J., Grant, G., & Marzo, F. (2000). Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of the Science of Food and Agriculture, 80, 397–403.CrossRefGoogle Scholar
  4. Aluko, R. E., Mofolasayo, O. A., & Watts, B. M. (2009). Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours. Journal of Agricultural and Food Chemistry, 57, 9793–9800.PubMedCrossRefGoogle Scholar
  5. Araya, H., Pak, N., Vera, G., & Alviña, M. (2003). Digestion rate of legume carbohydrates and glycemic index of legume-based meals. International Journal of Food Sciences and Nutrition, 54, 119–126.PubMedCrossRefGoogle Scholar
  6. Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2019). The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innovative Food Science and Emerging Technologies, 52, 100–107.CrossRefGoogle Scholar
  7. Bani, P., Minuti, A., Ficuciello, V., Guerreschi, M., Astorri, G., & Galassi, G. (2009). In vitro digestibility of field pea as influenced by processing methods. Italian Journal of Animal Science, 8(Suppl. 2), 259–261.CrossRefGoogle Scholar
  8. Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., & Ristic, N. (2010). Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International Journal of Molecular Sciences, 11, 4973–4990.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ben-Hdech, H., Gallant, D. J., Bouchet, B., Gueguen, J., & Melcion, J.-P. (1991). Extrusion-cooking of pea flour: Structural and immunocytochemical aspects. Food Structure, 10, 203–212.Google Scholar
  10. Black, R. G., Singh, U., & Meares, C. (1998). Effect of genotype and pretreatment of field peas (Pisum sativum) on their dehulling and cooking quality. Journal of the Science of Food and Agriculture, 77, 251–258.CrossRefGoogle Scholar
  11. Bodnaryk, R. P., Fields, P. G., Xie, Y., & Fulcher, K. A. (1999, September 21). Insecticidal factor from field peas. US Patent 5,955,082.Google Scholar
  12. Bogahawaththa, D., Bao Chau, N. H., Trivedi, J., Dissanayake, M., & Vasiljevic, T. (2019). Impact of selected process parameters on solubility and heat stability of pea protein isolate. LWT- Food Science and Technology, 102, 246–253.CrossRefGoogle Scholar
  13. Boye, J. I., & Ma, Z. (2015). Impact of processing on bioactive compounds of field peas. In V. Preedy (Ed.), Processing and impact on active components in food (pp. 63–70). London: Elsevier.CrossRefGoogle Scholar
  14. Boye, J. I., Zare, F., & Pletch, A. (2010a). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43, 414–431.CrossRefGoogle Scholar
  15. Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. (2010b). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43, 537–546.CrossRefGoogle Scholar
  16. Brummer, Y., Kaviani, M., & Tosh, S. M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117–125.CrossRefGoogle Scholar
  17. Burger, T. G., & Zhang, Y. (2019). Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science and Technology, 86, 25–33.CrossRefGoogle Scholar
  18. Campos-Vega, R., Loarca-Piña, G., & Oomah, B. D. (2010). Minor components of pulses and their potential impact on human health. Food Research International, 43, 461–482.CrossRefGoogle Scholar
  19. Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering, 167(Part A), 59–64.CrossRefGoogle Scholar
  20. Carvajal-Piñero, J. M., Ramos, M., Jiménez-Rosado, M., Perez-Puyana, V., & Romero, A. (2019). Development of pea protein bioplastics by a thermomoulding process: Effect of the mixing stage. Journal of Polymers and the Environment, 27, 968–978. Scholar
  21. Chakraborty, P., Sosulski, F., & Bose, A. (1979). Ultracentrifugation of salt-soluble proteins in ten legume species. Journal of the Science of Food and Agriculture, 30, 766–771.CrossRefGoogle Scholar
  22. Chan, C. B., Gupta, J., Kozicky, L., Hashemi, Z., & Yang, K. (2014). Improved glucose tolerance in insulin-resistant rats after pea hull feeding is associated with changes in lipid metabolism-targeted transcriptome. Applied Physiology, Nutrition, and Metabolism, 39, 1112–1119.PubMedCrossRefGoogle Scholar
  23. Chen, Y., Cao, X., Chang, P. R., & Huneault, M. A. (2008). Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydrate Polymers, 73, 8–17.CrossRefGoogle Scholar
  24. Chen, Y., Liu, C., Chang, P. R., Anderson, D. P., & Huneault, M. A. (2009). Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polymer Engineering and Science, 49, 369–378.CrossRefGoogle Scholar
  25. Chen, M., Lu, J., Liu, F., Nsor-Atindana, J., Xu, F., Goff, H. D., Ma, J., & Zhong, F. (2019). Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids, 88, 247–255.CrossRefGoogle Scholar
  26. Cheng, M., Qi, J.-R., Feng, J.-L., Cao, J., Wang, J.-M., & Yang, X.-Q. (2018). Pea soluble polysaccharides obtained from two enzyme-assisted extraction methods and their application as acidified milk drinks stabilizers. Food Research International, 109, 544–551.PubMedCrossRefGoogle Scholar
  27. Corrales, M., Han, J. H., & Tauscher, B. (2009). Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. International Journal of Food Science and Technology, 44, 425–433.CrossRefGoogle Scholar
  28. Cruz-Suarez, L. E., Ricque-Marie, D., Tapia-Salazar, M., McCallum, I. M., & Hickling, D. (2001). Assessment of differently processed feed pea (Pisum sativum) meals and canola meal (Brassica sp.) in diets for blue shrimp (Litopenaeus stylirostris). Aquaculture, 196, 87–104.CrossRefGoogle Scholar
  29. Dahl, W. J. (2017). Pea hull fiber: A dietary fiber to modulate gastrointestinal function and gut microbiota. Cereal Foods World, 62, 203–206.CrossRefGoogle Scholar
  30. Dalgetty, D. D., & Baik, B.-K. (2003). Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. Cereal Chemistry, 80, 310–315.CrossRefGoogle Scholar
  31. Dalgetty, D. D., & Baik, B.-K. (2006). Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils, and chickpeas. Cereal Chemistry, 83, 269–274.CrossRefGoogle Scholar
  32. Davies, S. J., & Gouveia, A. (2010). Response of common carp fry fed diets containing a pea seed meal (Pisum sativum) subjected to different thermal processing methods. Aquaculture, 305, 117–123.CrossRefGoogle Scholar
  33. Della Valle, G., Quillien, L., & Gueguen, J. (1994). Relationships between processing conditions and starch and protein modifications during extrusion-cooking of pea flour. Journal of the Science of Food and Agriculture, 64, 509–517.CrossRefGoogle Scholar
  34. Des Marchais, L.-P., Foisy, M., Mercier, S., Villeneuve, S., & Mondor, M. (2011). Bread-making potential of pea protein isolate produced by a novel ultrafiltration/diafiltration process, 11th International Congress on Engineering and Food (ICEF11). Procedia Food Science, 1, 1425–1430.CrossRefGoogle Scholar
  35. Djoullah, A., Husson, F., & Saurel, R. (2018). Gelation behaviors of denaturated pea albumin and globulin fractions during transglutaminase treatment. Food Hydrocolloids, 77, 636–645.CrossRefGoogle Scholar
  36. Dreywood, R. (1946). Qualitative test for carbohydrate material. Industrial and Engineering Chemistry, Analytical Edition, 18, 499.CrossRefGoogle Scholar
  37. Eyaru, R., Shrestha, A. K., & Arcot, J. (2009). Effect of various processing techniques on digestibility of starch in Red kidney bean (Phaseolus vulgaris) and two varieties of peas (Pisum sativum). Food Research International, 42, 956–962.CrossRefGoogle Scholar
  38. Felix, M., Perez-Puyana, V., Romero, A., & Guerrero, A. (2010). Development of thermally processed bioactive pea protein gels: Evaluation of mechanical and antioxidant properties. Food and Bioproducts Processing, 101, 74–83.CrossRefGoogle Scholar
  39. Fields, P. G., Xie, Y. S., & Hou, X. (2001). Repellent effect of pea (Pisum sativum) fractions against stored-product insects. Journal of Stored Products Research, 37, 359–370.PubMedCrossRefGoogle Scholar
  40. Fredrikson, M., Biot, P., Alminger, M. L., Carlsson, N.-G., & Sandberg, A.-S. (2001). Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. Journal of Agricultural and Food Chemistry, 49, 1208–1212.PubMedCrossRefGoogle Scholar
  41. Fuhrmeister, H., & Meuser, F. (2003). Impact of processing on functional properties of protein products from wrinkled peas. Journal of Food Engineering, 56, 119–129.CrossRefGoogle Scholar
  42. Goyal, R. K., Vishwakarma, R. K., & Wanjari, O. D. (2008). Optimisation of the pigeon pea dehulling process. Biosystems Engineering, 99, 56–61.CrossRefGoogle Scholar
  43. Greenwell, H. L., Gramkow, J. L., Jolly-Breithaupt, M. L., MacDonald, J. C., & Jenkins, K. H. (2018). Effects of field pea supplementation on digestibility and rumen volatile fatty acid concentrations of beef-cattle diets containing high and low quality forages. The Professional Animal Scientists, 34, 631–641.CrossRefGoogle Scholar
  44. Gulewicz, P., Szymaniec, S., Bubak, B., Frias, J., Vidal-Valverde, C., Trojanowska, K., & Gulewicz, K. (2002). Biological activity of α-galactoside preparations from Lupinus angustifolius L. and Pisum sativum L. seeds. Journal of Agricultural and Food Chemistry, 50, 384–389.PubMedCrossRefGoogle Scholar
  45. Han, H., & Baik, B.-K. (2008). Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. International Journal of Food Science and Technology, 43, 1971–1978.CrossRefGoogle Scholar
  46. Hashemi, Z., Yang, K., Yang, H., Jin, A., Ozga, J., & Chan, C. B. (2015). Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet–fed rats. Applied Physiology, Nutrition, and Metabolism, 40, 323–333.PubMedCrossRefGoogle Scholar
  47. Hashemi, Z., Fouhse, J., Im, H. S., Chan, C. B., & Willing, B. P. (2017). Dietary pea fiber supplementation improves glycemia and induces changes in the composition of gut microbiota, serum short chain fatty acid profile and expression of mucins in glucose intolerant rats. Nutrients, 9, 1236.PubMedCentralCrossRefGoogle Scholar
  48. Holt, N. W., & Sosulski, F. W. (1979). Amino acids composition and protein quality of field peas. Canadian Journal of Plant Science, 59, 653–660.CrossRefGoogle Scholar
  49. Hood-Niefer, S. D., & Tyler, R. T. (2010). Effect of protein, moisture content and barrel temperature on the physicochemical characteristics of pea flour extrudates. Food Research International, 43, 659–663.CrossRefGoogle Scholar
  50. Hou, X., & Fields, P. (2003). Effectiveness of protein-rich pea flour for the control of stored-product beetles. Entomologia Experimentalis et Applicata, 108, 125–131.CrossRefGoogle Scholar
  51. Hou, X., Fields, P., & Taylor, W. (2004a). Combination of protein-rich pea flour and pea extract with insecticides and enzyme inhibitors for control of stored-product beetles. Canadian Entomologist, 136, 581–590.CrossRefGoogle Scholar
  52. Hou, X., Fields, P., Flinn, P., Perez-Mendoza, J., & Baker, J. (2004b). Control of stored-product beetles with combinations of protein-rich pea flour and parasitoids. Environmental Entomology, 33, 671–680.CrossRefGoogle Scholar
  53. Islam, F., Gopalan, V., Lam, A. K.-Y., & Kabir, S. R. (2018). Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. International Journal of Biological Macromolecules, 117, 1050–1057.PubMedCrossRefGoogle Scholar
  54. Jiménez-Moreno, E., Chamorro, S., Frikha, M., Safaa, H. M., Lázaro, R., & Mateos, G. G. (2011). Effects of increasing levels of pea hulls in the diet on productive performance, development of the gastrointestinal tract, and nutrient retention of broilers from one to eighteen days of age. Animal Feed Science and Technology, 168, 100–112.CrossRefGoogle Scholar
  55. Kaack, K., & Pedersen, L. (2005). Application of by-products from industrial processing of potato flour and yellow peas as ingredients in low-fat high-fibre sausages. European Food Research and Technology, 221, 313–319.CrossRefGoogle Scholar
  56. Kadlec, P., Rubecova, A., Hinkova, A., Kaasova, J., Bubnik, Z., & Pour, V. (2001). Processing of yellow pea by germination, microwave treatment and drying. Innovative Food Science and Emerging Technologies, 2, 133–137.CrossRefGoogle Scholar
  57. Kaiser, A. C., Barber, N., Manthey, F., & Hall, C., III. (2019). Physicochemical properties of hammer‐milled yellow split pea (Pisum Sativum L.). Cereal Chemistry, 96, 313–323.CrossRefGoogle Scholar
  58. Kamaljit, K., Baljeet, S., & Amarjeet, K. (2010). Preparation of bakery products by incorporating pea flours as a functional ingredient. American Journal of Food Technology, 5, 130–135.CrossRefGoogle Scholar
  59. Kaya, E., Tuncel, N. Y., & Tuncel, N. B. (2018). Utilization of lentil, pea, and faba bean hulls in Turkish noodle production. Journal of Food Science and Technology, 55, 1734–1745.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Khattab, R. Y., Arntfield, S. D., & Nyachoti, C. M. (2009). Nutritional quality of legume seeds as affected by some physical treatments, Part 1: Protein quality evaluation. LWT- Food Science and Technology, 42, 1107–1112.CrossRefGoogle Scholar
  61. Klüver, E., & Meyer, M. (2015). Thermoplastic processing, rheology, and extrudate properties of wheat, soy, and pea proteins. Polymer Engineering and Science, 55, 1912–1919.CrossRefGoogle Scholar
  62. Kristiawan, M., Micard, V., Maladira, P., Alchamieh, C., Maigret, J.-E., Réguerre, A.-L., Emin, M. A., & Della Valle, G. (2018). Multi-scale structural changes of starch and proteins during pea flour extrusion. Food Research International, 108, 203–215.PubMedCrossRefGoogle Scholar
  63. Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Review International, 34, 126–147.CrossRefGoogle Scholar
  64. Leite, T. S., de Jesus, A. L. T., Schmiele, M., Tribst, A. A. L., & Cristianini, M. (2017). High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT- Food Science and Technology, 76, 361–369.CrossRefGoogle Scholar
  65. Li, C., & Ganjyal, G. M. (2017). Chemical composition, pasting, and thermal properties of 22 different varieties of peas and lentils. Cereal Chemistry, 94, 392–399.CrossRefGoogle Scholar
  66. Li, H., Kim, N.-J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresource Technology, 100, 3245–3251.PubMedCrossRefGoogle Scholar
  67. Li, C., Kowalski, R. J., Li, L., & Ganjyal, G. M. (2017). Extrusion expansion characteristics of samples of select varieties of whole yellow and green dry pea flours. Cereal Chemistry, 94, 385–391.CrossRefGoogle Scholar
  68. Liang, H.-N., & Tang, C.-H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33, 309–319.CrossRefGoogle Scholar
  69. Lu, Y., Weng, L., & Cao, X. (2006). Morphological, thermal and mechanical properties of ramie crystallites—Reinforced plasticized starch biocomposites. Carbohydrate Polymers, 63, 198–204.CrossRefGoogle Scholar
  70. Ma, Z., Boye, J. I., Simpson, B. K., Prasher, S. O., Monpetit, D., & Malcolmson, L. (2011). Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International, 44, 2534–2544.CrossRefGoogle Scholar
  71. Ma, Z., Boye, J. I., & Hu, X. (2017). In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Research International, 92, 64–78.PubMedCrossRefGoogle Scholar
  72. Makri, E., Papalamprou, E., & Doxastakis, G. (2005). Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids, 19, 583–594.CrossRefGoogle Scholar
  73. Martín-Cabrejas, M. A., Ariza, N., Esteban, R., Molla, E., Waldron, K., & López-Andréu, F. J. (2003). Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). Journal of Agricultural and Food Chemistry, 51, 1254–1259.PubMedCrossRefGoogle Scholar
  74. Maskus, H., & Arntfield, S. (2015). Extrusion processing and evaluation of an expanded, puffed pea snack product. Journal of Nutrition & Food Sciences, 5, 378.Google Scholar
  75. Maskus, H., Bourré, L., Fraser, S., Sarkar, A., & Malcolmson, L. (2016). Effects of grinding method on the compositional, physical, and functional properties of whole and split yellow pea flours. Cereal Foods World, 61, 59–64.CrossRefGoogle Scholar
  76. Mehyar, G. F., Han, J. H., Holley, R. A., Blank, G., & Hydamaka, A. (2007). Suitability of pea starch and calcium alginate as antimicrobial coatings on chicken skin. Poultry Science, 86, 386–393.PubMedCrossRefGoogle Scholar
  77. Mession, J.-L., Chihi, M. L., Sok, N., & Saurel, R. (2015). Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 46, 233–243.CrossRefGoogle Scholar
  78. Minihane, A. M., & Rimbach, G. (2002). Iron absorption and the iron binding and anti-oxidant properties of phytic acid. International Journal of Food Science and Technology, 37, 741–748.CrossRefGoogle Scholar
  79. Mollard, R. C., Luhovyy, B. L., Smith, C., & Anderson, G. H. (2014). Acute effects of pea protein and hull fibre alone and combined on blood glucose, appetite, and food intake in healthy young men—A randomized crossover trial. Applied Physiology, Nutrition, and Metabolism, 39, 1360–1365.PubMedCrossRefGoogle Scholar
  80. Mondor, M., Tuyishime, O., & Drolet, H. (2012). Production of pea protein concentrates by ultrafiltration: Influence of hollow-fibre module. Innovative Food Science and Emerging Technologies, 14, 135–138.CrossRefGoogle Scholar
  81. Mondor, M., Guévremont, É., & Villeneuve, S. (2014). Processing, characterization and bread-making potential of malted yellow peas. Food Bioscience, 7, 11–18.CrossRefGoogle Scholar
  82. Nichols, N. N., Dien, B. S., Wu, Y. V., & Cotta, M. A. (2005). Ethanol fermentation of starch from field peas. Cereal Chemistry, 82, 554–558.CrossRefGoogle Scholar
  83. Nikolopoulou, D., Grigorakis, K., Stasini, M., Alexis, M. N., & Iliadis, K. (2007). Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year. Food Chemistry, 103, 847–852.CrossRefGoogle Scholar
  84. Nosworthy, M. G., Franczyk, A. J., Medina, G., Neufeld, J., Appah, P., Utioh, A., Frohlich, P., & House, J. D. (2017). Effect of processing on the in vitro and in vivo protein quality of yellow and green split peas (Pisum sativum). Journal of Agricultural and Food Chemistry, 65, 7790–7796.PubMedCrossRefGoogle Scholar
  85. Oliete, B., Potin, F., Cases, E., & Saurel, R. (2018). Modulation of the emulsifying properties of pea globulin soluble aggregates by dynamic high-pressure fluidization. Innovative Food Science and Emerging Technologies, 47, 292–300.CrossRefGoogle Scholar
  86. Owusu-Asiedu, A., Baidoo, S. K., & Nyachoti, C. M. (2002). Effect of heat processing on nutrient digestibility in pea and supplementing amylase and xylanase to raw, extruded or micronized pea-based diets on performance of early-weaned pigs. Canadian Journal of Animal Science, 82, 367–374.CrossRefGoogle Scholar
  87. Pelgrom, P. J. M., Vissers, A. M., Boom, R. M., & Schutyser, M. A. I. (2013). Dry fractionation for production of functional pea protein concentrates. Food Research International, 53, 232–239.CrossRefGoogle Scholar
  88. Perez, V., Felix, M., Romero, A., & Guerrero, A. (2016). Characterization of pea protein-based bioplastics processed by injection moulding. Food and Bioproducts Processing, 97, 100–108.CrossRefGoogle Scholar
  89. Perez-Puyana, V., Felix, M., Romero, A., & Guerrero, A. (2016). Effect of the injection moulding processing conditions on the development of pea protein-based bioplastics. Journal of Applied Polymer Science, 133, 43306. Scholar
  90. Periago, M. J., Vidal, M. L., Ros, G., Rincón, F., Martínez, C., López, G., Rodrigo, J., & Martínez, I. (1998). Influence of enzymatic treatment on the nutritional and functional properties of pea flour. Food Chemistry, 63, 71–78.CrossRefGoogle Scholar
  91. Petitot, M., Boyer, L., Minier, C., & Micard, V. (2010). Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Research International, 43, 634–641.CrossRefGoogle Scholar
  92. Piecyk, M., Wołosiak, R., Drużynska, B., & Worobiej, E. (2012). Chemical composition and starch digestibility in flours from Polish processed legume seeds. Food Chemistry, 135, 1057–1064.PubMedCrossRefGoogle Scholar
  93. Pietrasik, Z., & Janz, J. A. M. (2010). Utilization of pea flour, starch-rich and fiber-rich fractions in low fat bologna. Food Research International, 43, 602–608.CrossRefGoogle Scholar
  94. Prairie Green Renewable Energy. (2016). Not your typical ethanol plant. Retrieved April 25, 2019, from
  95. Pretheep Kumar, P., Mohan, S., & Balasubramanian, G. (2004). Effect of whole-pea flour and a protein-rich fraction as repellents against stored-product insects. Journal of Stored Products Research, 40, 547–552.CrossRefGoogle Scholar
  96. Qamar, S., Bhandari, B., & Prakash, S. (2019). Effect of different homogenisation methods and UHT processing on the stability of pea protein emulsion. Food Research International, 116, 1374–1385. Scholar
  97. Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: Composition, structure and properties – A review. Starch/Stärke, 54, 217–234.CrossRefGoogle Scholar
  98. Reichert, R. D. (1981). Quantitative isolation and estimation of cell wall material from dehulled pea (Pisum sativum) flours and concentrates. Cereal Chemistry, 58, 266–270.Google Scholar
  99. Reichert, R. D. (1982). Air classification of peas (Pisum sativum) varying widely in protein content. Journal of Food Science, 47, 1263–1268.CrossRefGoogle Scholar
  100. Rempel, C., Geng, X., & Zhang, Y. (2019). Industrial scale preparation of pea flour fractions with enhanced nutritive composition by dry fractionation. Food Chemistry, 276, 119–128.PubMedCrossRefGoogle Scholar
  101. Ribéreau, S., Aryee, A. N. A., Tanvier, S., Han, J., & Boye, J. I. (2018). Composition, digestibility, and functional properties of yellow pea as affected by processing. Journal of Food Processing & Preservation, 42, e13375.CrossRefGoogle Scholar
  102. Röhe, I., Goodarzi Boroojeni, F., & Zentek, J. (2017). Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers. Poultry Science, 96, 4075–4084.PubMedCrossRefGoogle Scholar
  103. Rubio, L. A., Pérez, A., Ruiz, R., Guzmán, M. A., Aranda-Olmedo, I., & Clemente, A. (2014). Characterization of pea (Pisum sativum) seed protein fractions. Journal of the Science of Food and Agriculture, 94, 280–287.PubMedCrossRefGoogle Scholar
  104. Saberi, B., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016a). Mechanical and physical properties of pea starch edible films in the presence of glycerol. Journal of Food Processing & Preservation, 40, 1339–1351.CrossRefGoogle Scholar
  105. Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016b). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342–352.CrossRefGoogle Scholar
  106. Saberi, B., Thakur, R., Bhuyan, D. J., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Development of edible blend films with good mechanical and barrier properties from pea starch and guar gum. Starch/Stärke, 69, 1600227.CrossRefGoogle Scholar
  107. Saberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018a). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9–20.CrossRefGoogle Scholar
  108. Saberi, B., Golding, J. B., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018b). Effect of biocomposite edible coatings based on pea starch and guar gum on nutritional quality of “Valencia” orange during storage. Starch/Stärke, 70, 1700299.CrossRefGoogle Scholar
  109. Sarkar, A., Kate, A. E., Kumbhar, B. K., & Singh, A. (2015). Effect of alkaline pretreatment parameters on saccharification of waste pea hulls. Journal of Biobased Materials and Bioenergy, 9, 433–438.CrossRefGoogle Scholar
  110. Schutyser, M. A. I., Pelgrom, P. J. M., van der Goot, A. J., & Boom, R. M. (2015). Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science and Technology, 45, 327–335.CrossRefGoogle Scholar
  111. Semple, R. L., Hicks, P. A., Lozare, J. V., & Castermans, A. (1992). Towards integrated commodity and pest management in grain storage: A training manual for application in humid tropical storage systems. Rome: Food and Agricultural Organization of the United Nations.Google Scholar
  112. Shamsuddin, A. M. (2002). Anti-cancer function of phytic acid. International Journal of Food Science and Technology, 37, 769–782.CrossRefGoogle Scholar
  113. Shand, P. J., Ya, H., Pietrasik, Z., & Wanasundara, P. K. J. P. D. (2007). Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chemistry, 102, 1119–1130.CrossRefGoogle Scholar
  114. Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from edible legumes: Chemistry, processing, and health benefits. Journal of Medicinal Food, 7, 67–78.PubMedCrossRefGoogle Scholar
  115. Shoaib, A., Sahar, A., Sameen, A., Saleem, A., & Tahir, A. T. (2018). Use of pea and rice protein isolates as source of meat extenders in the development of chicken nuggets. Journal of Food Processing & Preservation, 42, e13763.CrossRefGoogle Scholar
  116. Sørensen, M., Morken, T., Kosanovic, M., & Øverland, M. (2011). Pea and wheat starch possess different processing characteristics and affect physical quality and viscosity of extruded feed for Atlantic salmon. Aquaculture Nutrition, 17, e326–e336.CrossRefGoogle Scholar
  117. Soto-Navarro, S. A., Williams, G. J., Bauer, M. L., Lardy, G. P., Landblom, D. G., & Caton, J. S. (2004). Effect of field pea replacement level on intake and digestion in beef steers fed by-product-based medium-concentrate diets. Journal of Animal Science, 82, 1855–1862.PubMedCrossRefGoogle Scholar
  118. Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., & Nickerson, M. T. (2015a). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31–38.CrossRefGoogle Scholar
  119. Stone, A. K., Avramenko, N. A., Warkentin, T. D., & Nickerson, M. T. (2015b). Functional properties of protein isolates from different pea cultivars. Food Science and Biotechnology, 24, 827–833.CrossRefGoogle Scholar
  120. Sun, X. D., & Arntfield, S. D. (2010). Gelation properties of salt-extracted pea protein induced by heat treatment. Food Research International, 43, 509–515.CrossRefGoogle Scholar
  121. Sun, X. D., & Arntfield, S. D. (2011). Dynamic oscillatory rheological measurement and thermal properties of pea protein extracted by salt method: Effect of pH and NaCl. Journal of Food Engineering, 105, 577–582.CrossRefGoogle Scholar
  122. Taherian, A. R., Mondor, M., Labranche, J., Drolet, H., Ippersiel, D., & Lamarche, F. (2011). Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International, 44, 2505–2514.CrossRefGoogle Scholar
  123. Thiessen, D. L., Campbell, G. L., & Adelizi, P. D. (2003). Digestibility and growth performance of juvenile rainbow trout (Oncorhynchus mykiss) fed with pea and canola products. Aquaculture Nutrition, 9, 67–75.CrossRefGoogle Scholar
  124. Tian, S., Kyle, W. S. A., & Small, D. M. (1999). Pilot scale isolation of proteins from field peas (Pisum sativum L.) for use as food ingredients. International Journal of Food Science and Technology, 34, 33–39.CrossRefGoogle Scholar
  125. Tosh, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43, 450–460.CrossRefGoogle Scholar
  126. Velayudhan, D. E., Mejicanos, G. A., & Nyachoti, C. M. (2019). Evaluation of pea protein isolates as a protein source for broilers. Poultry Science, 98, 803–810.PubMedCrossRefGoogle Scholar
  127. Verma, A. K., Banerjee, R., & Sharma, B. D. (2015). Quality characteristics of low fat chicken nuggets: Effect of salt substitute blend and pea hull flour. Journal of Food Science and Technology, 52, 2288–2295.PubMedCrossRefGoogle Scholar
  128. Vidal-Valverde, C., Frias, J., Sierra, I., Blazquez, I., Lambein, F., & Kuo, Y.-H. (2002). New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. European Food Research and Technology, 215, 472–477.CrossRefGoogle Scholar
  129. Vidal-Valverde, C., Frias, J., Hernández, A., Martín-Alvarez, P. J., Sierra, I., Rodríguez, C., Blazquez, I., & Vicente, G. (2003). Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum) seeds. Journal of the Science of Food and Agriculture, 83, 298–306.CrossRefGoogle Scholar
  130. Villeneuve, S., & Mondor, M. (2014). Processing and bread-making potential of proteins isolated from malted and non-malted pea seeds by ultrafiltration/diafiltration. Food Bioscience, 8, 33–36.CrossRefGoogle Scholar
  131. Vinauskienė, R., Morkūnaite, R., & Leskauskaitė, D. (2015). The influence of pea products on the functional properties of frankfurters. CyTA Journal of Food, 13, 282–292.CrossRefGoogle Scholar
  132. Wang, N., Hatcher, D. W., & Gawalko, E. J. (2008). Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chemistry, 111, 132–138.CrossRefGoogle Scholar
  133. Wang, N., Maximiuk, L., & Toews, R. (2012). Pea starch noodles: Effect of processing variables on characteristics and optimisation of twin-screw extrusion process. Food Chemistry, 133, 742–753.CrossRefGoogle Scholar
  134. Xiong, T., Ye, X., Su, Y. T., Chen, X., Sun, H., Li, B., & Chen, Y. (2018a). Identification and quantification of proteins at adsorption layer of emulsion stabilized by pea protein isolates. Colloids and Surfaces B: Biointerfaces, 171, 1–9.PubMedCrossRefGoogle Scholar
  135. Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018b). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267.PubMedCrossRefGoogle Scholar
  136. Yao, W., Liu, C., Xi, X., & Wang, H. (2010). Impact of process conditions on digestibility of pea starch. International Journal of Food Properties, 13, 1355–1363.CrossRefGoogle Scholar
  137. Zhao, B., & Chang, K. C. (2008). Evaluation of effects of soaking and precooking conditions on the quality of precooked dehydrated pea, lentil and chickpea products. Journal of Food Processing & Preservation, 32, 517–532.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.St-Hyacinthe Research and Development CentreAgriculture and Agri-Food CanadaSt-HyacintheCanada

Personalised recommendations