Advertisement

Pulses pp 1-15 | Cite as

Adzuki Bean

  • Sindhu
  • A. ManickavasaganEmail author
Chapter
  • 49 Downloads

Abstract

The adzuki bean (Vigna angularis) is a legume crop, mostly bushy and upright, typically 1–2 ft. in height. The adzuki bean belongs to the Fabaceae family; it is commonly known as adzuki bean, red bean, and red mung bean. The wild forms of adzuki bean are supposed to be originated in Japan for over 6000 years ago, whereas the cultivated varieties were developed 4000 years ago. It is widely grown in the Yangtze River valley in China (FAO 2007). It occupies second rank after soybean among dry bean crop in Japan. These beans are also stated to be used as a soil improvement crop and animal feed crop (FAO 2007).

Keywords

Production Nutrient content Post-harvest processing Hard-to-cook bean Ozonation High hydrostatic pressure Meat extender Ann Granuliform adzuki 

References

  1. Afonso Júnior, P. C., & Corrêa, P. C. (1999). Comparação de modelos matemáticos para descrição da cinética de secagem em camada fina de sementes de feijão. Revista Brasileira de Engenharia Agrícola e Ambiental, 3(3), 349–353.CrossRefGoogle Scholar
  2. Ag Marketing Resource Center. (2019). Retrieved October 31, 2019, from https://www.agmrc.org/commodities-products/vegetables/azuki-beans
  3. Almeida, D. P., et al. (2009). Cinética de secagem do feijão adzuki (Vigna angularis). Global Science and Technology, 2(1), 72–83.Google Scholar
  4. Ariga, T. (1988). Antioxidative properties of procyanidins B-1 and B-3 from azuki beans in aqueous system. Agricultural and Biological Chemistry, 52, 2722–2817.Google Scholar
  5. Ariga, T., & Asao, Y. (1981). Isolation, identification and organoleptic astringency of dimeric proanthocyanidins occurring in Azuki beans. Agricultural and Biological Chemistry, 45(12), 2709–2712.Google Scholar
  6. Ariga, T., & Hamano, M. (1990). Radical scavenging action and its mode in procyanidins B-1 and B-3 from azuki beans to peroxyl radicals. Agricultural and Biological Chemistry, 54(10), 2499–2504.Google Scholar
  7. Aslinah, L. N. F., Yusoff, M. M., & Ismail-Fitry, M. R. (2018). Simultaneous use of adzuki beans (Vigna angularis) flour as meat extender and fat replacer in reduced-fat beef meatballs (bebola daging). Journal of Food Science and Technology, 55(8), 3241–3248.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bello, E. F. T., Martínez, G. G., Ceberio, B. F. K., Rodrigo, D., & López, A. M. (2014). High pressure treatment in foods. Food, 3(3), 476–490.CrossRefGoogle Scholar
  9. Biliaderis, C. D., Maurice, T. J., & Vose, J. R. (1980). Starch gelatinization phenomena studied by differential scanning calorimetry. Journal of Food Science, 45(6), 1669–1673.CrossRefGoogle Scholar
  10. Borchgrevink, C. P. (2013). Culinary perspective of dry beans and pulses. Dry beans and pulses: Production, processing, and nutrition. Chichester: Wiley-Blackwell.Google Scholar
  11. Chen, Y., Yang, X., Guo, H., Li, J., & Ren, G. (2019). Effect of extruded adzuki bean flour on the quality and α-glucosidase inhibitory activity of Chinese steamed bread. Food Science & Nutrition, 7(10), 3244–3252.CrossRefGoogle Scholar
  12. Chiang Su New Medical College. (1977). “Dictionary of Chinese Crude Drugs” (in Chinese) (p. 1090). Shanghai: Shanghai Scientific Technologic Publisher.Google Scholar
  13. Chilukuri, A., & Swanson, B. G. (1991). Microstructure of adzuki beans (Vigna angularis cv. Express). Food Structure, 10(2), 3.Google Scholar
  14. Duke, J. A. (1981). Vigna angularis (Willd.) Ohwi & Ohashi. In Handbook of legumes of world economic importance (pp. 288–293). New York: Plenum Press.CrossRefGoogle Scholar
  15. Food and Agricultural Organization of the United Nations. (2007). Help to build a world without hunger. Retrieved October 31, 2019, from http://ecocrop.fao.org/ecocrop/srv/en/cropView?id=2147
  16. Foodnet Limited. (2018). Retrieved from https://www.foodnet.ltd.uk/
  17. Gohara, A. K., Souza, A. H. P. D., Gomes, S. T. M., Souza, N. E. D., Visentainer, J. V., & Matsushita, M. (2016). Nutritional and bioactive compounds of adzuki beans cultivars using chemometric approach. Ciência e Agrotecnologia, 40(1), 104–113.CrossRefGoogle Scholar
  18. Hori, Y., Murakoso, T., Fukumura, M., Toriizuka, K., & Ida, Y. (2009). Constituents and antioxidative activity of a hot-water extract of adzuki (Vigna angularis) beans. Journal of Japanese Society of Nutrition and Food Science, 62(1), 3–11.CrossRefGoogle Scholar
  19. Hoshikawa, K. (1985). Azuki beans (in Japanese). In Edible crops (pp. 460–471). Tokyo: Yokendo Publisher.Google Scholar
  20. Hussain, A., Watts, B. M., & Bushuk, W. (1989). Hard-to-cook phenomenon in beans: Changes in protein electrophoretic patterns during storage. Journal of Food Science, 54(5), 1367–1368.CrossRefGoogle Scholar
  21. Itoh, T., Itoh, Y., Mizutani, M., Fujishiro, K., Furuichi, Y., Komiya, T., et al. (2002). A hot-water extract of adzuki (Vigna angularis) induces apotosis in cultured human stomach cancer cells. Nippon Shokuhin Kagaku Kogaku Kaishi, 49, 339–344; in Japanese.CrossRefGoogle Scholar
  22. Kato, J., Yousif, A. M., Deeth, H. C., Suzuki, M. M., Caffin, N. A., & Meguro, T. (2000). Differences in the cooking quality between two adzuki varieties harvested in Australia and stored at different temperatures. Journal of Cookery Science of Japan, 33(2), 257–266.Google Scholar
  23. Kelly, J. D., Cichy, K. A., Siddiq, M., & Uebersax, M. A. (2013). Dry bean breeding and production technologies. Dry beans and pulses: Production, processing, and nutrition (pp. 23–54). Chichester: Wiley-Blackwell.Google Scholar
  24. Li, L., Liu, B., & Zheng, X. (2011a). Bioactive ingredients in adzuki bean sprouts. Journal of Medicinal Plants Research, 5(24), 5894–5898.Google Scholar
  25. Li, N., Li, Y., & Zhu, Y. (2011b). Development of granuliform adzuki bean set yogurt. China Dairy Industry, 39(3), 62–64.Google Scholar
  26. Luo, J., Cai, W., Wu, T., & Xu, B. (2016). Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.) and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chemistry, 201, 350–360.  https://doi.org/10.1016/j.foodchem.2016.01.101.CrossRefPubMedGoogle Scholar
  27. McClary, D. C., Raney, T. L., & Lumpkin, T. A. (1989). Japanese food marketing channels: A case study of azuki beans and azuki products. Washington State Univ., IMPACT Center Rpt. 29. Pullman.Google Scholar
  28. Mendes, U. C., Resende, O., Donadon, J. R., Almeida, D. P., Da Rocha, A. C., & Oliveira, D. E. C. (2016). Effect of drying on the physical properties of adzuki bean. Semina: Ciências Agrárias, 37(6), 3871–3880.Google Scholar
  29. Ozawa, Y. (1978). On the viability of stored adzuki beans (Phaseolus angularis) and its hardness after cooking (in Japanese, English summary). Report of the National Food Research Institute, 33, 37–40.Google Scholar
  30. Pirhayati, M., Soltanizadeh, N., & Kadivar, M. (2011). Chemical and microstructural evaluation of ‘hard-to-cook’ phenomenon in legumes (Pinto Bean and Small-type Lentil). International Journal of Food Science and Technology, 46, 1884–1890.CrossRefGoogle Scholar
  31. PlantUse English Contributors. (2015). “Vigna angularis (PROTA),” PlantUse English. Retrieved October 31, 2019, from https://uses.plantnetproject.org/e/index.php?title=Vigna_angularis_(PROTA)&oldid=198622
  32. Qing, K., Zhiqiang, D., Wei, Z., Yan, W. (2009). Study on adzuki bean yogurt beverage. China Brewing, 2.Google Scholar
  33. Reddy, C. K., Luan, F., & Xu, B. (2017). Morphology, crystallinity, pasting, thermal and quality characteristics of starches from adzuki bean (Vigna angularis L.) and edible kudzu (Pueraria thomsonii Benth). International Journal of Biological Macromolecules, 105, 354–362.PubMedCrossRefGoogle Scholar
  34. Resende, O., Almeida, D. P., Costa, L. M., Mendes, U. C., & Sales, J. D. F. (2012). Adzuki beans (Vigna angularis) seed quality under several drying conditions. Food Science and Technology, 32(1), 151–155.CrossRefGoogle Scholar
  35. Reyes-Moreno, C., Paredes-López, O., & Gonzalez, E. (1993). Hard-to-cook phenomenon in common beans—A review. Critical Reviews in Food Science & Nutrition, 33(3), 227–286.CrossRefGoogle Scholar
  36. Roberston, L. S., & Frazier, R. D. (1978). Dry bean production – Principles and practices. Michigan State University Extension Bulletin E-1251. East Lansing. 225 p.Google Scholar
  37. Rubatzky, V. E., & Yamaguchi, M. (1997). World vegetables: Principles, production, and nutritive values (2nd ed.). New York: Chapman & Hall.CrossRefGoogle Scholar
  38. Sacklin, J. (1985). Quality control for edible dry beans. In Technical Conference on Dry Bean Research (1985, San Francisco, CA, USA). Proceedings.Google Scholar
  39. Sacks, F. M. (1977). A literature review of Phaseolus angularis—the adzuki bean. Economic Botany, 31, 9–15.CrossRefGoogle Scholar
  40. Sakakibara, M., Aoki, T., & Noguchi, H. (1979). Isolation and characterization of 7S protein-I of Phaseolus angularis (Adzuki bean). Agricultural and Biological Chemistry, 43(9), 1951–1957.Google Scholar
  41. Sangsukiam, T., & Duangmal, K. (2017). A comparative study of physico-chemical properties and antioxidant activity of freeze-dried mung bean (Vigna radiata) and adzuki bean (Vigna angularis) sprout hydrolysate powders. International Journal of Food Science & Technology, 52(9), 1971–1982.CrossRefGoogle Scholar
  42. Santos Alexandre, A. P., Vela-Paredes, R. S., Santos, A. S., Costa, N. S., Canniatti-Brazaca, S. G., Calori-Domingues, M. A., & Augusto, P. E. D. (2018). Ozone treatment to reduce deoxynivalenol (DON) and zearalenone (ZEN) contamination in wheat bran and its impact on nutritional quality. Food Additives & Contaminants: Part A, 35(6), 1189–1199.CrossRefGoogle Scholar
  43. Shahbazi, F., Analooei, M., & Saffar, A. (2012). Mechanical damage to pinto bean seeds as affected by moisture content, impact velocity and seed orientation. International Journal of Food Engineering, 7(6), 8.Google Scholar
  44. Shigenori, N., Yusuke, S., Chihiro, S., Jun, K., Hiroshi, K., & Kazunori, H. (2008). Suppression of serum cholesterol levels in mice by adzuki bean polyphenols. Food Science and Technology Research, 14, 217–220.CrossRefGoogle Scholar
  45. Singh, P., & Raghuvanshi, R. S. (2012). Finger millet for food and nutritional security. African Journal of Food Science, 6(4), 77–84.Google Scholar
  46. Su, H. L., & Chang, K. C. (1995). Physicochemical and sensory properties of dehydrated bean paste products as related to bean varieties. Journal of Food Science, 60(4), 794–814.CrossRefGoogle Scholar
  47. Tao, Y. U., Ahn, H. M., Shen, T., Yoon, K. J., Jang, H. J., & Lee, Y. J. (2011). Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. Journal of Ethnopharmacology, 137, 1197–1206.CrossRefGoogle Scholar
  48. Tjahjadi, C., & Breene, W. M. (1984). Isolation and characterization of adzuki bean (Vigna angularis cv Takara) starch. Journal of Food Science, 49(2), 558–562.CrossRefGoogle Scholar
  49. Tjahjadi, C., Lin, S., & Breene, W. M. (1988). Isolation and characterization of adzuki bean (Vigna angularis cv Takara) proteins. Journal of Food Science, 53(5), 1438–1443.CrossRefGoogle Scholar
  50. Tokitomo, Y. (1988). Odor of cooked Japanese adzuki beans. Japanese Journal of Agricultural Chemistry, 62, 17–22.CrossRefGoogle Scholar
  51. Tomohiro, I., Misato, K., Fumihiko, H., & Yukio, F. (2009). Hypoglycemic effect of hot-water extracts of adzuki (Vigna angularis) in spontaneously diabetic KK-Ay mice. Nutrition Journal, 25, 134–141.CrossRefGoogle Scholar
  52. US Department of Agriculture, Agricultural Research Service (2019). Food Data Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/173727/nutrients
  53. Ueno, S., Shigematsu, T., Karo, M., Hayashi, M., & Fujii, T. (2015). Effects of high hydrostatic pressure on water absorption of adzuki beans. Food, 4(2), 148–158.CrossRefGoogle Scholar
  54. Yao, Y., Cheng, X., Wang, S., Wang, L., & Ren, G. (2012). Influence of altitudinal variation on the antioxidant and antidiabetic potential of azuki bean (Vigna angularis). International Journal of Food Sciences and Nutrition, 63(1), 117–124.PubMedCrossRefGoogle Scholar
  55. Yoshida, H., Tomiyama, Y., Yoshida, N., Shibata, K., & Mizushina, Y. (2010). Regiospecific profiles of fatty acids in triacylglycerols and phospholipids from adzuki beans (Vigna angularis). Nutrients, 2(1), 49–59.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Yoshida, K., Kondo, T., Ito, M., & Kondo, T. (2005). Analysis of polyphenols in water extract of red adzuki bean, Vigna angularis. ITE Letters on Batteries New Technologies and Medicine, 6(3), C1.Google Scholar
  57. Yoshida, K., Sato, Y., Okuno, R., Kameda, K., Isobe, M., & Kondo, T. (1996). Structural analysis and measurement of anthocyanins from colored seed coats of Vigna, Phaseolus, and Glycine legumes. Bioscience, Biotechnology, and Biochemistry, 60(4), 589–593.CrossRefGoogle Scholar
  58. Yousif, A. M., Batey, I. L., Larroque, O. R., Curtin, B., Bekes, F., & Deeth, H. C. (2003). Effect of storage of adzuki bean (Vigna angularis) on starch and protein properties. LWT-Food Science and Technology, 36(6), 601–607.CrossRefGoogle Scholar
  59. Yousif, A. M., Deeth, H. C., Caffin, N. A., & Lisle, A. T. (2002). Effect of storage time and conditions on the hardness and cooking quality of adzuki (Vigna angularis). LWT-Food Science and Technology, 35(4), 338–343.CrossRefGoogle Scholar
  60. Yousif, A. M., Kato, J., & Deeth, H. C. (2007). Effect of storage on the biochemical structure and processing quality of adzuki bean (Vigna angularis). Food Reviews International, 23(1), 1–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations