Skip to main content

Ground States of the Antiferromagnetic Heisenberg Chains

  • Chapter
  • First Online:
Physics and Mathematics of Quantum Many-Body Systems

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3999 Accesses

Abstract

In the present chapter, we focus on properties of the ground state and low energy excited states of the one-dimensional antiferromagnetic Heisenberg model, often called the “antiferromagnetic Heisenberg chain”. Recall that, according to Shastry’s theorem (Theorem 4.2 in p. 76), the ground state does not exhibit long-range order or spontaneous symmetry breaking. In Sect. 6.1, we describe Haldane’s conclusion about the qualitative difference between the antiferromagnetic Heisenberg chains with half-odd-integer and integer S, along with necessary background. Then we discuss the origin of the difference from two different points of view. We describe and prove the (generalized) Lieb–Schultz–Mattis theorem in Sect. 6.2, and present a semi-classical picture based on kink dynamics in Sect. 6.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the numbering of lattice sites is different from that in (3.1.2).

  2. 2.

    Such results based on unproved assumptions are sometimes referred to as “exact but non-rigorous” results.

  3. 3.

    There is a set of energy eigenstates, known as the des Cloizeaux–Pearson mode, with excitation energy \(\varepsilon _k=(\pi /2)|\sin k|\), where k is the wave number [17].

  4. 4.

    There is no general proof of this fact. In the quantum Ising model (3.3.1) with sufficiently large \(\lambda \), the Ornstein–Zernike type behavior of the ground state correlation function was rigorously established by Kennedy [34].

  5. 5.

    See footnote 5 in p. 53.

  6. 6.

    We learned that Edward Witten, who heard Haldane’s talk in 1983 at the conference in honor of the 60th birthday of Philip Anderson, was one of the first to realize a possible connection between Haldane’s argument and the topological angle. Affleck was informed of Haldane’s work and its possible topological interpretation by Witten (Ian Affleck, private communication).

  7. 7.

    It is indeed surprising that Haldane’s two published papers [25, 26] deal with large S limit, where the difference between the models with half-odd-integer S and integer S is expected to become infinitesimal, as is suggested by the formula \({\varDelta E}\simeq 2Se^{-\pi S}\) for the Haldane gap for integer S. Now it is known that Haldane had yet another argument which relies on the analogy to the Berezinskii–Kosterlitz–Thouless transition, and does not make use of the large S limit. This work has not been published in a journal but was made public by Haldane himself in 2016 [24]. (According to Haldane one of the referees of the paper stated that it was “in manifest contradiction to fundamental principles of physics” [28].) See also [29].

  8. 8.

    It is believed that a three dimensional spin system obtained by weakly coupling the \(S=1\) antiferromagnetic Heisenberg chains has a disordered ground state with a gap [3, 38, 52]. It is likely that NENP never develops long-range order at any temperatures.

  9. 9.

    One finds \({\varDelta E}_\mathrm {H}\simeq 0.089\) for \(S=2\), \({\varDelta E}_\mathrm {H}\simeq 0.0100\) for \(S=3\), and \({\varDelta E}_\mathrm {H}\simeq 7.99\times 10^{-4}\) for \(S=4\). The result for \(S=4\) was obtained by a Monte Carlo simulation of the chain with 73,728 sites, performed on a supercomputer [62].

  10. 10.

    Use the variational estimate described in Sect. .

  11. 11.

    We learned this trick from [36]. In fact this step can be avoided, and one can bound the expectation value \(\langle \varPhi _\mathrm {GS}|(\hat{U}_\mathrm{LSM}^\dagger \hat{H}\hat{U}_\mathrm{LSM}-\hat{H})|\varPhi _\mathrm {GS}\rangle \) directly by using a slightly complicated estimate that makes use of an extra symmetry of \(|\varPhi _\mathrm {GS}\rangle \) as in [5, 39]. We then get a better bound \(\langle \varPhi _\mathrm {LSM}|\hat{H}|\varPhi _\mathrm {LSM}\rangle -E_\mathrm{GS}\le 4\pi ^2S^2/L\) instead of (6.2.11).

    In all the early applications of the Lieb–Schultz–Mattis method [5, 39, 45, 69], it was assumed that the system possesses inversion or time-reversal symmetry in addition to the U(1) symmetry and translation invariance. The above estimate shows that the inversion or time-reversal symmetry is in fact not necessary. It is interesting that this (more or less standard) argument had been overlooked until Koma [36] applied the Lieb–Schultz–Mattis method to quantum Hall systems on a quasi one-dimensional strip.

  12. 12.

    The proof is standard (and essentially the same as that described in footnote 9 in p. 58). Translation invariance \(\hat{T}\hat{H}\hat{T}^\dagger =\hat{H}\) implies \(\hat{T}\hat{H}=\hat{H}\hat{T}\). Thus \(\hat{H}(\hat{T}|\varPhi _\mathrm {GS}\rangle )=\hat{T}\hat{H}|\varPhi _\mathrm {GS}\rangle =E_\mathrm{GS}\hat{T}|\varPhi _\mathrm {GS}\rangle \), and the uniqueness implies \(\hat{T}|\varPhi _\mathrm {GS}\rangle =e^{i\alpha }|\varPhi _\mathrm {GS}\rangle \). The Marshall–Lieb–Mattis theorem (Theorem 2.2 in p. 39) implies \(e^{i\alpha }=\pm 1\), but we do not use this fact.

  13. 13.

    The same statement was proved for the infinite system by Affleck and Lieb [5]. See the end of the present section.

  14. 14.

    Such a statement should be proved for the infinite system. The proof is difficult since one cannot exclude the possibility that linear combinations of the ground state and low-lying excitations for finite L converge to multiple infinite volume ground states in the limit \(L\uparrow \infty \).

  15. 15.

    See Sect. A.2.3 for the meaning of inequalities between self-adjoint operators.

  16. 16.

    It is believed that \(\langle \varPhi _\mathrm {GS}|\varPhi _\mathrm{LSM}\rangle \simeq -1\) if the ground state exhibits Haldane gap [42].

  17. 17.

    Equation (6.2.29) is easily verified by differentiating both sides by \(\varDelta \theta \).

  18. 18.

    This rephrasing of the Lieb–Schultz–Mattis theorem was also essential for the later development of related theories. See the next paragraph and Sect. 8.3.5.

  19. 19.

    One may call a bond right to an even site even.

  20. 20.

    We admit this argument is far from sufficient to conclude that the model is gapless.

  21. 21.

    We note that this may not be the case in general. In this sense our picture here for the \(S=1\) chain is only approximate.

  22. 22.

    This proposition was proved by the present author in 1986, but was not published. It was later included as a part of [58].

  23. 23.

    The proof is elementary. Let \(|\varPsi _j\rangle \) with \(j=1,2,\ldots ,D\) be the normalized energy eigenstate with eigenvalue \(E_j\). We choose \(|\varPsi _1\rangle =|\varPhi _\mathrm {GS}\rangle \). Then \(e^{-\beta \hat{H}}|\tilde{\varPsi }^{\varvec{\sigma }^{(0)}}\rangle =\sum _{j=1}^D|\varPsi _j\rangle e^{-\beta E_j}\langle \varPsi _j|\tilde{\varPsi }^{\varvec{\sigma }^{(0)}}\rangle =e^{-\beta E_\mathrm{GS}}\{|\varPhi _\mathrm {GS}\rangle \langle \varPhi _\mathrm{GS}|\tilde{\varPsi }^{\varvec{\sigma }^{(0)}}\rangle +\sum _{j=2}^D e^{-\beta (E_j-E_\mathrm{GS})}|\varPsi _j\rangle \langle \varPsi _j|\tilde{\varPsi }^{\varvec{\sigma }^{(0)}}\rangle \}\). Noting that \(e^{-\beta (E_j-E_\mathrm{GS})}\downarrow 0\) as \(\beta \uparrow \infty \) if \(j\ge 2\), we get (6.3.10).

  24. 24.

    There are many ways to arrange the product in the right-hand side. One chooses an arrangement suitable for the purpose. See, e.g., [21, 35, 56, 58].

  25. 25.

    In fact it is enough to sum over \(\varvec{\sigma }^{(j)}\) such that \(\overline{\varvec{\sigma }^{(j)}}=0\).

References

  1. I. Affleck, The quantum Hall effects, \(\sigma \)-models at \(\Theta =\pi \) and quantum spin chains. Nucl. Phys. B 257, 397–406 (1985)

    Google Scholar 

  2. I. Affleck, Quantum spin chains and the Haldane gap. J. Phys. Condens. Matter 1, 3047 (1989)

    Article  ADS  Google Scholar 

  3. I. Affleck, Model for quasi-one-dimensional antiferromagnets: application to CsNiCl\({}_3\). Phys. Rev. Lett. 62 (1989). Errata: Phys. Rev. Lett. 62, 1927 (1989); Phys. Rev. Lett. 65, 2477 (1990); Phys. Rev. Lett. 65, 2835 (1990)

    Google Scholar 

  4. I. Affleck, Field theory methods and quantum critical phenomena, in Fields, Strings and Critical Phenomena, Proceedings of the 1988 Les Houches Summer School, ed. by E. Brézin, J. Zinn-Justin (North-Holland, Amsterdam, 1990), pp. 563–640

    Google Scholar 

  5. I. Affleck, E.H. Lieb, A proof of part of Haldane’s conjecture on spin chains. Lett. Math. Phys. 12, 57–69 (1986)

    Google Scholar 

  6. I. Affleck, D. Gepner, H.J. Schulz, T. Ziman, Critical behaviour of spin-\(s\) Heisenberg antiferromagnetic chains: analytic and numerical results. J. Phys. A: Math. Gen. 22, 511 (1989)

    Google Scholar 

  7. M. Aizenman, B. Nachtergaele, Geometric aspects of quantum spin states. Commun. Math. Phys. 164, 17–63 (1994), https://projecteuclid.org/euclid.cmp/1104270709

  8. M. Aizenman, H. Duminil-Copin, S. Warzel, Dimerization and Néel order in different quantum spin chains through a shared loop representation, preprint (2020), arXiv:2002.02543

  9. S. Bachmann, A. Bols, W. De Roeck, M. Fraas, A many-body index for quantum charge transport. Commun. Math. Phys. (2019), arXiv:1810.07351

  10. V. Barzykin, I. Affleck, Finite-size scaling for the spin-Heisenberg antiferromagnetic chain. J. Phys. A: Math. Gen. 32, 867 (1999), arXiv:cond-mat/9810075

  11. H. Bethe, Zur Theorie der Metalle I: Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys. 71, 205–226 (1931)

    Google Scholar 

  12. R. Botet, R. Jullien, M. Kolb, Finite-size-scaling study of the spin-1 Heisenberg-Ising chain with uniaxial anisotropy. Phys. Rev. B 28, 3914 (1983)

    Google Scholar 

  13. W.J.L. Buyers, R.M. Morra, R.L. Armstrong, M.J. Hogan, P. Gelrach, K. Hirakawa, Experimental evidence for the Haldane gap in a spin-1 nearly isotropic, antiferromagnetic chain. Phys. Rev. Lett. 56, 371 (1986)

    Google Scholar 

  14. X. Chen, Z.-C. Gu, X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011), arXiv:1008.3745

  15. X. Chen, Z.-C. Gu, X.-G. Wen, Complete classification of 1D gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128 (2011), arXiv:1103.3323

  16. M. Date, K. Kindo, Elementary excitation in the Haldane state. Phys. Rev. Lett. 65, 1659 (1990)

    Google Scholar 

  17. J. des Cloizeaux, J.J. Pearson, Spin-wave spectrum of the antiferromagnetic linear chain. Phys. Rev. 128, 2131 (1962)

    Google Scholar 

  18. R. Fernández, J. Fröhlich, A.D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer, Berlin, 1992)

    Google Scholar 

  19. E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  20. S. Friedli, Y. Velenik, Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction (Cambridge University Press, Cambridge, 2017)

    Google Scholar 

  21. J. Ginibre, Existence of phase transitions for quantum lattice systems. Commun. Math. Phys. 14, 205–234 (1969), https://projecteuclid.org/euclid.cmp/1103841776

  22. O. Golinelli, Th. Jolicoeur, R. Lacaze, Finite-lattice extrapolations for a Haldane-gap antiferromagnet. Phys. Rev. B 50, 3037 (1994)

    Google Scholar 

  23. G. Gómez-Santos, Variational approach to the XXZ spin-1 linear chain: elementary excitations and Haldane conjecture. Phys. Rev. Lett. 63, 790 (1989)

    Google Scholar 

  24. F.D.M. Haldane, Ground state properties of antiferromagnetic chains with unrestricted spin: integer spin chains as realisations of the \(O(3)\) non-linear sigma model, ILL preprint SP-81/95 (1981), arXiv:1612.00076

  25. F.D.M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the \(O(3)\) nonlinear sigma model. Phys. Lett. A 93, 464–468 (1983), http://www.sciencedirect.com/science/article/pii/037596018390631X

  26. F.D.M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983). https://doi.org/10.1103/PhysRevLett.50.1153

  27. F.D.M. Haldane, “\(\Theta \) physics” and quantum spin chains (abstract). J. Appl. Phys. 57, 3359 (1985). https://doi.org/10.1063/1.335096

  28. F.D.M. Haldane, Topological quantum matter, nobel lecture (2016). See, in particular, from 39m 40s, https://www.youtube.com/watch?v=47Ab1izxH9Y

  29. F.D.M. Haldane, Nobel lecture: topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017)

    Google Scholar 

  30. T. Hara, H. Tasaki, Mathematics and Physics of Phase Transitions and Critical Phenomena (in Japanese) (Kyoritsu, Tokyo, 2015)

    Google Scholar 

  31. M.B. Hastings, Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004), arXiv:0305505

  32. M.B. Hastings, Sufficient conditions for topological order in insulators. Eur. Phys. Lett. 70, 824–830 (2005), arXiv:cond-mat/0411094

  33. M.B. Hastings, T. Koma, Spectral gap and exponential decay of correlations. Commun. Math. Phys. 256, 781–804 (2006), arXiv:math-ph/0507008

  34. T. Kennedy, Ornstein-Zernike decay in the ground state of the quantum Ising model in a strong transverse field. Commun. Math. Phys. 137, 599–615 (1991), https://projecteuclid.org/euclid.cmp/1104202743

  35. T. Kennedy, H. Tasaki, Hidden symmetry breaking and the Haldane phase in \(S= 1\) quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992), https://projecteuclid.org/euclid.cmp/1104250747

  36. T. Koma, Spectral gaps of quantum Hall systems with interactions. J. Stat. Phys. 99, 313–381 (2000), arXiv:cond-mat/9809228

  37. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  38. Yu.A. Kosevich, A.V. Chubukov, Fluctuation corrections to the spectra of one- and two-dimensional Heisenberg magnets. Zh. Eksp. Teor. Fiz. 91, 1105 (1986) [Sov. Phys. JETP 64, 654 (1986)], http://www.jetp.ac.ru/cgi-bin/e/index/e/64/3/p654?a=list

  39. E.H. Lieb, T. Schultz, D. Mattis, Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Google Scholar 

  40. S. Lukyanov, V. Terras, Long-distance asymptotics of spin-spin correlation functions for the XXZ spin chain. Nucl. Phys. B 654, 323–356 (2003), arXiv:hep-th/0206093

  41. B. Nachtergaele, R. Sims, A multi-dimensional Lieb-Schultz-Mattis theorem. Commun. Math. Phys. 276, 437–472 (2007), arXiv:math-ph/0608046

  42. M. Nakamura, S. Todo, Order parameter to characterize valence-bond-solid states in quantum spin chains. Phys. Rev. Lett. 89, 077204 (2002), arXiv:cond-mat/0112377

  43. M.P. Nightingale, H.W.J. Blöte, Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte Carlo calculation. Phys. Rev. B 33, 659 (1986)

    Google Scholar 

  44. M. Oshikawa, Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett. 84, 1535 (2000), arXiv:cond-mat/9911137

  45. M. Oshikawa, M. Yamanaka, I. Affleck, Magnetization plateaus in spin chains: “Haldane gap” for half-integer spins. Phys. Rev. Lett. 78, 1984 (1997), arXiv:cond-mat/9610168

  46. S.A. Parameswaran, A.M. Turner, D.P. Arovas, A. Vishwanath, Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nat. Phys. 9, 299–303 (2013), arXiv:1212.0557

  47. J.B. Parkinson, J.C. Bonner, Spin chains in a field: crossover from quantum to classical behavior. Phys. Rev. B 32, 4703 (1985)

    Google Scholar 

  48. L.P. Regnault, I. Zaliznyak, J.P. Renard, C. Vettier, Inelastic-neutron-scattering study of the spin dynamics in the Haldane-gap system Ni(C\(_2\)H\(_8\)N\(_2\))\(_2\)NO\(_2\)(ClO\(_4\)). Phys. Rev. B 50, 9174 (1994)

    Google Scholar 

  49. J.P. Renard, M. Verdaguer, L.P. Regnault, W.A.C. Erkelens, J. Rossat-Mignod, W.G. Stirling, Presumption for a quantum energy gap in the quasi-one-dimensional \(S=1\) Heisenberg antiferromagnet Ni(C\(_2\) H\(_8\)N\(_2\))\(_2\) NO\(_2\) (ClO\(_4\)). Europhys. Lett. 3, 945 (1987)

    Google Scholar 

  50. J.P. Renard, M. Verdaguer, L.P. Regnault, W.A.C. Erkelens, J. Rossat-Migdot, W.G. Stirling, C. Vettier, Quantum energy gap in two quasi-one-dimensional \(S=1\) Heisenberg antiferromagnets. J. Appl. Phys. 63, 3538 (1988)

    Google Scholar 

  51. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  52. T. Sakai, M. Takahashi, Effect of the Haldane gap on quasi-one-dimensional systems. Phys. Rev. B 42, 4537–4543 (1990)

    Google Scholar 

  53. U. Schollwöck, Th. Jolicoeur, Haldane gap and hidden order in the \(S=2\) antiferromagnetic quantum spin chain. Europhys. Lett. 30, 493 (1995), arXiv:cond-mat/9501115

  54. M. Steiner, K. Kakurai, J.K. Kjems, D. Petitgrand, R. Pynn, Inelastic neutron scattering studies on 1D near Heisenberg antiferromagnets: a test of the Haldane conjecture. J. Appl. Phys. 61, 3953 (1987)

    Google Scholar 

  55. B. Sutherland, Beautiful Models — 70 Years of Exactly Solved Quantum Many-Body Problems (World Scientific, Singapore, 2004)

    Google Scholar 

  56. M. Suzuki (ed.), Quantum Monte Carlo Methods in Condensed Matter Physics (World scientific, Singapore, 1993)

    Google Scholar 

  57. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  58. H. Tasaki, Haldane gap in three dimensions: a rigorous example. Phys. Rev. Lett. 64, 2066–2069 (1990)

    Google Scholar 

  59. H. Tasaki, Lieb-Schultz-Mattis theorem with a local twist for general one-dimensional quantum systems. J. Stat. Phys. 170, 653–671 (2018), arXiv:1708.05186

  60. H. Tasaki, Topological phase transition and \(\mathbb{Z} _2\) index for \(S=1\) quantum spin chains. Phys. Rev. Lett. 121, 140604 (2018), arXiv:1804.04337

  61. S. Todo, K. Kato, Cluster algorithms for general-\(S\) quantum spin systems. Phys. Rev. Lett. 87, 047203 (2001), arXiv:cond-mat/9911047

  62. S. Todo, H. Matsuo, H. Shitara, Parallel loop cluster quantum Monte Carlo simulation of quantum magnets based on global union-find graph algorithm. Comput. Phys. Commun. 239, 84–93 (2019), arXiv:1810.07485

  63. H. Watanabe, The Lieb-Schultz-Mattis-type filling constraints in the 1651 magnetic space groups. Phys. Rev. B 97, 165117 (2018), arXiv:1802.00587

  64. H. Watanabe, A proof of the Bloch theorem for lattice models. J. Stat. Phys. 177, 717–726 (2019), arXiv:1904.02700

  65. H. Watanabe, H.C. Po, A. Vishwanath, M.P. Zaletel, Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals. Proc. Natl. Acad. Sci. U.S.A. 112, 14551–14556 (2015), http://www.pnas.org/content/112/47/14551

  66. X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford University Press, Oxford, 2007)

    Google Scholar 

  67. X.-G. Wen, Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 41004 (2017), arXiv:1610.03911

  68. X.-G. Wen, Choreographed entanglement dances: topological states of quantum matter. Science 363, 834 (2019), http://science.sciencemag.org/content/363/6429/eaal3099

  69. M. Yamanaka, M. Oshikawa, I. Affleck, Nonperturbative approach to Luttinger’s theorem in one dimension. Phys. Rev. Lett. 79, 1110 (1997), arXiv:cond-mat/9701141

  70. B. Zeng, X. Chen, D.-L. Zhou, X.-G. Wen, Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phase in Many-Body Systems (Quantum Science and Technology, Springer, Berlin, 2019), arXiv:1508.02595

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal Tasaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tasaki, H. (2020). Ground States of the Antiferromagnetic Heisenberg Chains. In: Physics and Mathematics of Quantum Many-Body Systems. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-41265-4_6

Download citation

Publish with us

Policies and ethics