Skip to main content

Geoinformatics and Kala-azar Disease Transmission

  • Chapter
  • First Online:
Spatial Mapping and Modelling for Kala-azar Disease

Part of the book series: SpringerBriefs in Medical Earth Sciences ((BRIEFSMEEASC))

  • 144 Accesses

Abstract

Geoinformatics is concerned about georeferenced data input, storage, recovery and addition, image processing operations, spatial analysis tools, visualization, plotting, and graph in a systematized form. The spatial distribution of the disease and vectors encompasses the practice of computational investigation and illustration of geographic data using the so-called geoinformatics. Moreover, several environmental variables derived from satellite data such as climate, land use/land cover, and other environmental aspects that influence the activity of pathogens, vectors, and their interactions with hosts and reservoirs can be used for mapping and monitoring the disease distribution pattern. Subsequently, the geographically referenced data may aid in numerous aspects, like documentation and spread of disease over time, population clusters at risk, forms of disease epidemics, ability accessible to healthcare and program intercession planning, and determination in disease outbreak. The Global Navigation Satellite System (GNSS) allows the correlation of the geographical distribution of VL with environmental factors. Hence, geoinformatics is a powerful tool for disease surveillance, envisaging its epidemics and monitoring control program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah AU, Dewan A, Shogib RI, Rahman M, Hossain F (2017) Environmental factors associated with the distribution of visceral leishmaniasis in endemic areas of Bangladesh: modelling the ecological niche. Trop Med Health 45:13

    Article  Google Scholar 

  • Beck LR, Lobitz BM, Wood BL (2000) Remote sensing and human health: new sensors and new opportunities. Emerg Infect Dis 6(3):217–226

    Article  Google Scholar 

  • Bern C, Hightower AW, Chowdhury R, Ali M, Amann J, Wagatsuma Y, Haque R, Kurkjian K, Vaz LE, Begum M, Akter T, Cetre-Sossah CB, Ahluwalia IB, Dotson E, Evan Secor W, Breiman RF, Maguire JH (2005) Risk factors for Kala-azar in Bangladesh. Emerg Infect Dis 11(5):655–662

    Article  Google Scholar 

  • Bhunia GS, Shit PK (2019) Geospatial analysis of public health. Springer Nature Switzerland AG 2019, ISBN 978-3-030-01679-1

    Google Scholar 

  • Bhunia GS, Kesari S, Jeyaram A, Kumar V, Das P (2010a) Influence of topography on the endemicity of Kala-azar: a study based on remote sensing and geographical information system. Geospat Health 4(2):155–165

    Article  Google Scholar 

  • Bhunia GS, Kumar V, Kumar AJ, Das P, Kesari S (2010b) The use of remote sensing in the identification of the eco-environmental factors associated with the risk of human visceral leishmaniasis (kala-azar) on the Gangetic plain, in north-eastern India. Ann Trop Med Parasitol 104(1):35–53

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Pal DK, Kumar V, Ranjan A, Das P (2011a) Incidence of visceral leishmaniasis in the Vaishali district of Bihar, India: spatial patterns and role of inland surface water bodies. Geospat Health 5:205–215

    Article  Google Scholar 

  • Bhunia GS, Dikhit MR, Kesari S, Sahoo GC, Das P (2011b) Role of remote sensing, geographical information system (GIS) and bioinformatics in kala-azar epidemiology. J Biomed Res 25(6):373–384. https://doi.org/10.1016/S1674-8301(11)60050-X

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2012a) Localization of kala-azar in the endemic region of Bihar, India based on land use/land cover assessment at different scales. Geospat Health 6(2):177–193

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2012b) Telehealth: a perspective approach for visceral leishmaniasis (kala-azar) control in India. Pathog Glob Health 106(3):1–9

    Article  Google Scholar 

  • Bhunia GS, Chatterjee N, Kumar V, Siddiqui NA, Mandal R, Das P, Kesari S (2012c) Delimitation of kala-azar risk areas in the district of Vaishali in Bihar (India) using a geo-environmental approach. Mem Inst Oswaldo Cruz 107(5):609–620

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2013) The Burden of Visceral Leishmaniasis in India: challenges in using remote sensing and GIS to understand and control. ISRN Infectious Diseases 2013:675846, 14 pages. Available at: https://doi.org/10.5402/2013/675846

  • Bill R (1999) Grundlagen der Geo-Informations systeme. Band 1 (Hardware, Software und Daten). 2. Aufl. Wichmann Verlag, Heidelberg, 4th edn, p 454

    Google Scholar 

  • Campbell-Lendrum D, Dujardin JP, Martinez E, Feliciangeli MD, Perez JE, de Silans LNMP, Desjeux P (2002) Domestic and peridomestic transmission of American cutaneous leishmaniasis: changing epidemiological patterns present new control opportunities. Mem Inst Oswaldo Cruz, Rio de Janeiro 96(2):159–162

    Article  Google Scholar 

  • Carreira JCA, Magalhães MAFM, da Silva AVM (2015) Chapter 6: The geospatial approach on eco-epidemiological studies of Leishmaniasis. INTECH. https://doi.org/10.5772/57210

    Google Scholar 

  • Chapman LAC, Jewell CP, Spencer SEF, Pellis L, Datta S, Chowdhury R et al (2018) The role of case proximity in transmission of visceral leishmaniasis in a highly endemic village in Bangladesh. PLoS Negl Trop Dis 12(10):e0006453

    Article  Google Scholar 

  • Clements ACA, Lwambo NJS, Blair L, Nyandindi U, Kaatano G, Kinung’hi S, Webster JP, Fenwick A, Brooker S (2006) Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop Med Int Health 11(4):490–503

    Article  Google Scholar 

  • Cline BL (1970) New eyes for epidemiologists: aerial photography and other remote sensing techniques. Am J Epidemiol 92:85–89

    Article  Google Scholar 

  • Elnaiem DA, Connor SJ, Thomson MC, Hassan MM, Hassan HK, Aboud MA, Ashford RW (1998) Environmental determinants of the distribution of Phlebotomus orientalis in Sudan. Ann Trop Med Parasitol 92:877–887

    Article  Google Scholar 

  • Fradelos EC, Papathanasiou IV, Mitsi D, Tsaras K, Kleisiaris CF, Kourkouta L (2014) Health based Geographic Information Systems (GIS) and their applications. Acta Inform Med 22(6):402–405. https://doi.org/10.5455/aim.2014.22.402-405

    Article  Google Scholar 

  • Golpayegani AA, Moslem AR, Akhavan AA, Zeydabadi A, Mahvi AH, Allah-Abadi A (2018) Modeling of environmental factors affecting the prevalence of zoonotic and anthroponotic cutaneous, and zoonotic visceral leishmaniasis in foci of Iran: a remote sensing and GIS based study. J Arthropod-Borne Dis 12(1):41–66

    Google Scholar 

  • Jeyaram A, Kesari S, Bajpai A, Bhunia GS, Krishna Murthy YVN (2012) Risk zone modelling and early warning system for visceral leishmaniasis (Kala-azar) disease in Bihar, India using remote sensing and GIS. The XXII congress of the International Society for Photogrammetry and Remote Sensing, 25 August–1st September, 2012, Melbourne Convection and Exhibition Centre

    Google Scholar 

  • Kalluri S, Gilruth P, Rogers D, Szczur M (2007) Surveillance of arthropod vector borne infectious diseases using remote sensing techniques: a review. PLoS Pathog 3(10):1361–1371

    Article  Google Scholar 

  • Kesari S, Bhunia GS, Kumar V, Jeyaram A, Ranjan A, Das P (2011) A comparative evaluation of endemic and non-endemic region of visceral leishmaniasis (Kala-azar) in India with ground survey and space technology. Mem Inst Oswaldo Cruz, Rio de Janeiro 106(5):515–523

    Article  Google Scholar 

  • Lima AP, Minelli L, Teodoro U, Comunello E (2002) Tegumentary leishmaniasis distribution by satellite remote sensing imagery, in Paraná State, Brazil. An Bras Dermatol 77(7):681–692

    Article  Google Scholar 

  • Maia-Elkhoury ANS, Alves WA, Sousa-Gomes ML, Sena JM, Luna EA (2008) Visceral leishmaniasis in Brazil: trends and challenges. Cad Saúde Pública 24:2941–2947

    Article  Google Scholar 

  • Mandal R, Kesari S, Kumar V, Das P (2018) Trends in spatio-temporal dynamics of visceral leishmaniasis cases in a highly endemic focus of Bihar, India: an investigation based on GIS tools. Parasit Vectors 11:220

    Article  Google Scholar 

  • Mandal R, Kumar V, Kesari S, Das P (2019) Assessing the combined effects of household type and insecticide effectiveness for kala-azar vector control using indoor residual spraying: a case study from North Bihar, India. Parasit Vectors 12:409

    Article  Google Scholar 

  • Miranda C, Massa JL, Marques CCA (1996) Analysis of the occurrence of American Cutaneous Leishmaniasis in Brazil by remote sensing satellite imagery. Rev Saude Publica 30(5):433–437

    Article  Google Scholar 

  • Nieto P, Malone JB, Bavia ME (2006) Ecological niche modeling for visceral leishmaniasis in the state of Bahia, Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. Geospat Health 1(1):115–126

    Article  Google Scholar 

  • Peterson AT, Pereira RS, Neves VFC (2004) Using epidemiological survey data to infer geographic distributions of leishmaniasis vector species. Rev Soc Bras Med Trop 37:10–14

    Article  Google Scholar 

  • Rogers DJ, Randolph SE, Snow RW, Hay SI (2002a) Satellite imagery in the study and forecast of malaria. Nature 415:710–715

    Article  Google Scholar 

  • Rogers ME, Chance ML, Bates PA (2002b) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124:495–508

    Article  Google Scholar 

  • Salomon OD, Orellano PW, Quintana MG, Pérez S, Sosa Estani S, Acardi S, Lamfri M (2006) Transmisión de la leishmaniasis tegumentaria en Argentina. Medicina (B Aires) 66:211–219

    Google Scholar 

  • Snow J (1849) On the mode of communication of cholera. Churchill, London

    Google Scholar 

  • Sudhakar S, Srinivas T, Palit A, Kar SK, Battacharya SK (2006) Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar state, India: an RS and GIS approach. J Vect Borne Dis 43:115–122

    Google Scholar 

  • Zhang Z, Ward M, Gao J, Wang Z, Yao B, Zhang T, Jiang Q (2013) Remote sensing and disease control in China: past, present and future. Parasit Vectors 6:11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, G.S., Shit, P.K. (2020). Geoinformatics and Kala-azar Disease Transmission. In: Spatial Mapping and Modelling for Kala-azar Disease. SpringerBriefs in Medical Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-41227-2_2

Download citation

Publish with us

Policies and ethics