Skip to main content

Didactics for the Development of Mathematical Thinking and the Sense of Academic Agency

  • Chapter
  • First Online:
Advances in Core Computer Science-Based Technologies

Abstract

This paper proposes to validate the structural relationships between the measurements of the academic agency components of student self-report and those observed in a mathematical learning episode, in order to provide evidence of how the metacognitive processes involved in success interact before and during an academic learning process. It is proposed to analyze the way in which learning styles, epistemic beliefs, and reading comprehension correlate with the degree of self-regulation and the ability to self-direct one’s cognitive resources in a conscious and voluntary way in the achievement of learning goals in tasks that involve solving mathematical problems around the notion of infinite process, mediated by the use of a computational tool. The findings underline the importance and role that the use of technology can play in developing teaching strategies and assessing learning outcomes that result in the promotion of metacognitive and self-regulated learning skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1, p. 21.

  2. 2.

    The program can be downloaded for free from the following link: http://www.geogebra.org.

  3. 3.

    ENLACE, an acronym for The National Evaluation of Academic Achievements in School Centers, was an exam that was applied each year in Mexico by the Secretary of Public Education (SEP) to all public and private elementary schools.

References

  1. A. Bandura, Social cognitive theory: an agentic Albert Bandura. Asian J. Soc. Psychol. 2(1), 21–41 (1999). https://doi.org/10.1111/1467-839X.00024

    Article  Google Scholar 

  2. Bentler, P.M. (2006). EQS Estructural Equations Program. Versión 6.2 [CD-ROM] Encino, CA: Multivariate Software, Inc

    Google Scholar 

  3. J. Bezuidenhout, Limits and continuity: some conceptions of first-year students. Int. J. Math. Educ. Sci. Technol. 32, 487–500 (2001)

    Article  Google Scholar 

  4. Brousseau, G. (1997). Theory of didactical situations in mathematics (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Trans.) Dordrecht, The Netherlands: Kluwer Academic

    Google Scholar 

  5. S.Y. Castañeda, E. Peñalosa, Validando constructos en epistemología personal. Revista Mexicana de Psicología 27(1), 65–75 (2010)

    Google Scholar 

  6. S. Castañeda, I. Pérez, Evaluando componentes de agencia académica en la WEB. Revista Mexicana de Psicología 22, 82–83 (2014)

    Google Scholar 

  7. S. Castañeda, M. Pineda, N. Somoza, E. Castro, Construcción de instrumentos de estrategias de estudio, autorregulación y epistemología personal. validación de constructo. Revista Mexicana de Psicología 27(1), 77–85 (2010)

    Google Scholar 

  8. S. Castañeda, E. Peñalosa, Y. Soto, Optimizando la Evaluación en Comprensión de Textos. Revista Mexicana de Psicología, 33, 1(January), 7–16 (2016)

    Google Scholar 

  9. B. Cornu, Limits, in Advanced mathematical thinking, ed. by D. Tall (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 153–166

    Google Scholar 

  10. R.B. Davis, S. Vinner, The notion of limit: Some seemingly unavoidable misconception stages. J. Math. Behav. 5, 281–303 (1986)

    Google Scholar 

  11. E. de Corte, F. Depaepe, P.O.T. Eynde, L. Verschaffel, Students’ self-regulation of emotions in mathematics: An analysis of meta-emotional knowledge and skills. ZDM Int J Math Educ 43(4), 483–495 (2011). https://doi.org/10.1007/s11858-011-0333-6

    Article  Google Scholar 

  12. P. Di Martino, R. Zan, Attitude towards mathematics: a bridge between beliefs and emotions. ZDM Int J Math Educ 43(4), 471–482 (2011). https://doi.org/10.1007/s11858-011-0309-6

    Article  Google Scholar 

  13. Enlace (2014) http://www.enlace.sep.gob.mx/ms/informes_de_resultados/Geogebra

  14. H.-Z. Ho, D. Senturk, A.G. Lam, J.M. Zimmer, S. Hong, Y. Okamoto, S.Y. Chiu, Y. Nakazawa, C.-P. Wang, The affective and cognitive dimensions of math anxiety: a cross-national study. J. Res. Math. Educ. 31(3), 362–379 (2000). http://doi.org/10.2307/749811

  15. B.K. Hofer, P.R. Pintrich, The development of epistemological theories: beliefs about knowledge and knowing and their relation to learning. Rev. Educ. Res. 67(1), 88–140 (1997). https://doi.org/10.3102/00346543067001088

    Article  Google Scholar 

  16. D.W.L. Hung, Meanings, contexts, and mathematical thinking: The meaning-context model. J. Math. Behav. 16(4), 311–324 (1997). https://doi.org/10.1016/S0732-3123(97)90010-9

    Article  Google Scholar 

  17. M. Kawski, How CAS and visualization lead to a complete rethinking of an introduction to vector calculus, in Proceeding of the Third International Conference on Technology in Mathematics Teaching, ed. by W. Fraunholz (Koblenz, Germany, 1997)

    Google Scholar 

  18. D. Leclercq, A. Cabrera, Conceptos y modelos para concebir, analizar y evaluar innovaciones curriculares basadas en competencias. en: Redes de colaboración para la innovación en la docencia universitaria: II Encuentro de Centros de Apoyo a la Docencia: ECAD: 29 y 30 de septiembre, 2011, UCM, Talca (2011)

    Google Scholar 

  19. M. Pinto, D. Tall, Building formal mathematics on visual imagery: a case study and a theory. Learn. Math. 22, 2–10 (2002)

    Google Scholar 

  20. S. Papert, Microworlds: transforming education, in Artificial Intelligence and Education volumen one: Learning Environments and Turoring Systems, ed. by R. Lawler, M. Yazdani (Ablex Publishing, 355 Chestnut St. Norwood, NJ 07648, 1987)

    Google Scholar 

  21. R. Peñalva, Las matemáticas en el desarrollo de la metacognición. Política Y Cultura, (33), 135–151. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-77422010000100008&lng=es&nrm=iso&tlng=es (2010)

  22. K.H. Roh, Students’ images and their understanding of definitions of the limit of a sequence. Educ. Stud. Math. 69(3), 217–233 (2008). https://doi.org/10.1007/s10649-008-9128-2

    Article  MathSciNet  Google Scholar 

  23. D.M. Santos, S. Castañeda, Objetivación de información en aprendizaje matemático autorregulado. Revista Mexicana de Investigación …, 713–736. Retrieved from http://dialnet.unirioja.es/servlet/articulo?codigo=2748540 (2008)

  24. D.M. Santos, Objetivar el conocimiento. Revista Mexicana de Psicología 27(1), 103–110. Retrieved from http://www.redalyc.org/articulo.oa?id=243016325011 (2010)

  25. A.H. Schoenfeld, Mathematical Problem Solving (Academic Press, New York, 1985)

    MATH  Google Scholar 

  26. A.H. Schoenfeld, Learning to think mathematically: problem solving, metacongnition, and sense-making in mathematics, in Teaching and Learning, ed. by D. Grouws (MacMillan, New York, 1992), pp. 334–370

    Google Scholar 

  27. A. Sierpińska, Humanities students and epistemological obstacles related to limits. Educ. Stud. Math. 18, 371–397 (1987)

    Article  Google Scholar 

  28. TECHSMITH, Camtasia Studio [CD-ROM]versión 6.0.0: TechSmith USA (2008)

    Google Scholar 

  29. S. Williams, Models of limit held by college calculus students. J. Res. Math. Educ. 22, 219–236 (1991)

    Article  Google Scholar 

  30. B.J. Zimmerman, Becoming a self-regulated learner : an overview 41(2), 64–70 (2002). http://doi.org/10.1207/s15430421tip4102

  31. A. Zuffianò, G. Alessandri, M. Gerbino, B.P. Luengo Kanacri, L. Di Giunta, M. Milioni, G.V. Caprara, Academic achievement: the unique contribution of self-efficacy beliefs in self-regulated learning beyond intelligence, personality traits, and self-esteem. Learn. Individ. Differ. 23(1), 158–162 (2013). https://doi.org/10.1016/j.lindif.2012.07.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Martín Santos Melgoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos Melgoza, D.M., Landa Hernández, J.A., Ulloa González, F.A., Valdés Ramírez, A. (2021). Didactics for the Development of Mathematical Thinking and the Sense of Academic Agency. In: Tsihrintzis, G., Virvou, M. (eds) Advances in Core Computer Science-Based Technologies. Learning and Analytics in Intelligent Systems, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-41196-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41196-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41195-4

  • Online ISBN: 978-3-030-41196-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics