Skip to main content

Metadata Web Searching EEG Signal

  • Chapter
  • First Online:
Advances in Core Computer Science-Based Technologies

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 14))

Abstract

In this paper, the problem of developing appropriate information search and retrieve mechanisms and tools in the web environment, is investigated. This problem is of great interest to those in information technology, since a vast amount of heterogeneous data are available, end so, are not interoperable on the Web to researchers or other interest groups. The problem is addressed here using, as, effective encoding for locating and sharing a very specific class of data, that of uniform diagnostic EEG features. In this study is proposed a suitable metadata schema, based on knowledge of medical EEG signal processing. The defined schema tries to initiate a dialog for further development of metadata specific formats of EEG recordings. The final aim of this study is to offer a web searching tool for data recorded and stored in a different operational structure or using several software and hardware systems, in a uniform EEG data collection for research and research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Willems, P. Arnaud, J.H. van Bemmel, R. Degani, P.W. Macfarlane, C. Zywietz, Common standards for quantitative electrocardiography: goals and main results. Methods Inf. Med. 29, 263–271 (1990)

    Article  Google Scholar 

  2. H. Wang, F. Azuaje, B. Jung, N. Black, A markup language for electrocardiogram data acquisition and analysis (ecgML). BMC Med. Inform. Decis. Mak. 3, 4 (2003). https://doi.org/10.1186/1472-6947-3-4

    Article  Google Scholar 

  3. MIT-BIH Arrhythmia Database. http://www.physionet.org/physiobank/database/mitdb/

  4. Health Level Seven XML Patient Record Architecture. http://xml.coverpages.org/hl7PRA.html

  5. ASTM, subcommittee E31.25. http://www.astm.org/COMMIT/COMMITTEE/E31.htm

  6. J. Dudeck, TC 251 task force on XML application in healthcare. CEN/TC251 Task Force XML-Final Report (1999). http://www.centc251.org/TCMeet/Doclist/TCdoc99/N99-067.doc

  7. Clinical Data Interchange Standards Consortium. http://www.cdisc.org/

  8. Open Archives Initiative. http://www.openarchives.org/

  9. M. Poulos, S. Papavlasopoulos, G. Bokos, A. Evangelou, An XML schema for the sharing and communication of heterogeneous EEG data for diagnostic and research purposes. J. Inf. Technol. Healthc. 4, 253–273 (2006)

    Google Scholar 

  10. X. Zhang, B. Hu, L. Zhou, J. Chen, P. Moore, An XML format for electroencephalogram data presentation (EEGML), in 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE, 2013), pp. 584–588

    Google Scholar 

  11. N.K. Kasabov, Brain disease diagnosis and prognosis based on EEG data, in Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence (Springer, Berlin, Heidelberg, 2019), pp. 339–359

    Google Scholar 

  12. S. Mahato, S. Paul, Electroencephalogram (EEG) signal analysis for diagnosis of major depressive disorder (MDD): a review, in Nanoelectronics, Circuits and Communication Systems (Springer, Singapore, 2019), pp. 323–335

    Google Scholar 

  13. C.J. James, O.J. Gibson, Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis. IEEE Trans. Biomed. Eng. 50(9), 1108–1116 (2003)

    Article  Google Scholar 

  14. The “10–20 System” of Electrode Placement. http://faculty.washington.edu/chudler/1020.html

  15. J. Olivan, Formats in clinical neurophysiology: the point of view of a user (2003). http://neurotraces.com/views/formats.html

  16. J. Durka, D. Ircha, SignalML: metaformat for description of biomedical time series. http://eeg.pl/SignalML/SignalML/SignalML.html

  17. R. Cohn, H.S. Leader, Synchronization characteristics of paroxysmal EEG activity. Electroencephalogr. Clin. Neurophysiol. 22, 421–428 (1967)

    Article  Google Scholar 

  18. B.R. Tharp, The penicillin focus: a study of field characteristics using cross-correlation analysis. Electroencephalogr. Clin. Neurophysiol. 31, 45–55 (1971)

    Article  Google Scholar 

  19. T. Matsuzaka, K. Ono, H. Baba, M. Matsuo, S. Tanaka, Y. Tsuji, S. Sugai, Interhemispheric correlation analysis of EEGs before and after corpus callosotomy. Jpn. J. Psychiatry Neurol. 47, 329–330 (1993)

    Google Scholar 

  20. A. Medvedev, L. Mackenzie, J.J. Hiscock, J.O. Willoughby, Frontal cortex leads other brain structures in generalised spike-and-wave spindles and seizure spikes induced by picrotoxin. Electroencephalogr. Clin. Neurophysiol. 98, 157–166 (1996)

    Article  Google Scholar 

  21. S.H. Papavlasopoulos, M.S. Poulos, G.D. Bokos, A. Evangelou, Classification control for discrimination between interictal epileptic and non-epileptic pathological EEG events. Int. J. Biomed. Sci. 1(1), 34–41 (2007)

    Google Scholar 

  22. B. Zhang, T. Lei, H. Liu, H. Cai, EEG-based automatic sleep staging using ontology and weighting feature analysis. Comput. Math. Methods Med. (2018)

    Google Scholar 

  23. F.H. Lopes da Silva, J.P. Pijn, P. Boeijinga, Interdependence of EEG signals: linear versus nonlinear associations and the significance of time delays and phase shifts. Brain Topogr. 2, 9–18 (1989)

    Google Scholar 

  24. N.J. Mars, F.H. Lopes da Silva, Propagation of seizure activity in kindled dogs. Electroencephalogr. Clin. Neurophysiol. 56, 194–209 (1983)

    Article  Google Scholar 

  25. M.A. Brazier, Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations. Exp. Neurol. 36, 263–272 (1972)

    Article  Google Scholar 

  26. J. Gotman, Interhemispheric relations during bilateral spike-and-wave activity. Epilepsia 22(4), 453–466 (1981)

    Article  Google Scholar 

  27. K. Kobayashi, Y. Ohtsuka, E. Oka, S. Ohtahara, Primary and secondary bilateral synchrony in epilepsy: differentiation by estimation of interhemispheric small time differences during short spike-wave activity. Electroencephalogr. Clin. Neurophysiol. 83(2), 93–103 (1992)

    Article  Google Scholar 

  28. R. Cmejla, Criteria for autoregressive model order estimation in analysis of speech signals. (In Czech) Acoust. Lett. 22, 4–7 (2000)

    Google Scholar 

  29. M. Poulos, M. Rangousi, N. Alexandris, A. Evangelou, Person identification from the EEG using nonlinear signal classification. Methods Inf. Med. 41, 64–75 (2002)

    Article  Google Scholar 

  30. B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans (SIAM, Philadelphia, 1982)

    Book  Google Scholar 

  31. F. Karameh, M.A. Dahleh, Automated classification of EEG signals in brain tumor diagnostics, in June 2000 Proceedings of the American Control Conference ACC2000 (Chicago IL, 2000), pp. 4169–4173

    Google Scholar 

  32. N. Hazarika, A.C. Tsoi, A.A. Sergejew, Nonlinear considerations in EEG signal classification A.A. IEEE Trans. Signal Process. 45(4), 829–836 (1997)

    Google Scholar 

  33. M. Poulos, F. Geogiacodis, V. Chrissicopoulos, A. Evangelou, Diagnostic test for the discrimination between interictal epileptic and non-epileptic pathological EEG events using auto-cross-correlation methods. Am. J. Electroneurodiagnostic Technol. 43, 228–264 (2003)

    Article  Google Scholar 

  34. I. Clark, R. Biscay, M. Echeverria, T. Virues, Multiresolution decomposition of non-stationary EEG signals: a preliminary study. Comput. Biol. Med. 25(4), 373–382 (1995)

    Article  Google Scholar 

  35. S. Papavlasopoulos, M. Poulos, A. Evangelou, Feature extraction from interictal epileptic and non-epileptic pathological EEG events for diagnostic purposes using LVQ1 neural network, in Mathematical Methods in Scattering Theory and Biomedical Engineering (2006), pp. 390–398

    Google Scholar 

  36. P. Durka, From wavelets to adaptive approximations: time-frequency parameterization of EEG. BioMedical Eng. Online 2, 1 (2003)

    Article  Google Scholar 

  37. F. Jose Maria et al., What does an epileptiform spike look like in MEG? comparison between coincident EEG and MEG spikes. J. Clin. Neurophysiol. 22(1), 68–73 (2005)

    Article  Google Scholar 

  38. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

    Book  Google Scholar 

  39. S. Mallat, A Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 14, 710–732 (1992)

    Google Scholar 

  40. E. Niedermeyer, Epileptic seizure disorders, in Electroencephalography: Basic Principles, Clinical Applications and Related Fields, ed. by E. Niedermeyer (Williams and Wilkins, LdSFBM, 1999), pp. 476–585

    Google Scholar 

  41. R. Quian Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 65, 041903 (2002)

    Article  Google Scholar 

  42. J. Mocks, T. Gasser, How to select epochs of the EEG at open eyes for quantitative analysis. Electroencephalogr. Clin. Neurophysiol. 58, 89–92 (1984)

    Article  Google Scholar 

  43. A.S. Gevins, B.C. Cutillo, Signals of cognition, in Clinical Applications of Computer Analysis of EEG and other Neurophysiological Signals. Handbook of Electroencephalography and Clinical Neurophysiology, vol. 2, ed. by F. Lopes da Silva, W. Storm van Leeuwen, A. Remond (Elsevier, Amsterdam, 1986), pp. 335–381

    Google Scholar 

  44. J.P. De Weerd, J.I. Kap, A posteriori time-varying filtering of averaged evoked potentials II. Mathematical and computational aspects. Biol. Cybern. 41, 223–234 (1981)

    Google Scholar 

  45. X.H. Yu, Z.Y. He, Y.S. Zhang, Time-varying adaptive filters for evoked potential estimation. IEEE Trans. Biomed. Eng. 41(11), 1062–1071 (1994)

    Article  Google Scholar 

  46. D.O. Walter, W. Adey: Is the brain linear?, in Technical and biological Problems of Control-a Cybernic Viwe, vol. 41, ed. by A.S. Iberall, J.B. Reswick (Instrument Society of America, Pittsburgh, P.A, 1968), pp. 11–22

    Google Scholar 

  47. M. Poulos, S. Papavlasopoulos, N. Alexandris, E. Vlachos, Comparison between auto-cross-correlation coefficients and coherence methods applied to the EEG for diagnostic purposes. Med. Sci. Monit. 10(10), MT99-MT108 (2004)

    Google Scholar 

  48. D.L. Gilbert et al., Meta-analysis of EEG test performance shows wide variation among studies. Neurology 60, 564–570 (2003)

    Article  Google Scholar 

  49. S. Rush, D.A. Driscoll, EEG electrode sensitivity—an application of reciprocity. IEEE Trans, biomed. Eng. (BME-16), 15–22 (1969)

    Google Scholar 

  50. L. Zhukov, D. Weinstein, C. Johnson, Statistical analysis for FEM EEG source localization in realistic head models. Technical report–techreports-2000. http://www.cs.utah.edu/techreports/2000/pdf/UUCS-00-003.pdf

  51. J.E. Richards, Recovering dipole sources from scalp-recorded event-related-potentials using component analysis: principal component analysis and independent component analysis. Int. J. Psychophysiol. 54, 201–220 (2004)

    Article  Google Scholar 

  52. D. Gardner et al., Common data model for neuroscience data and data model exchange. J. Am. Med. Inform. Assoc 8(1), 17–33 (2001)

    Article  Google Scholar 

  53. M.P.G. Bokos, N.K.S. Papavlasopoulos, M. Avlonitis, Specific selection of FFT amplitudes from audio sports and news broadcasting for classification purposes. J. Graph Algorithms Appl. 11(1), 277–307 (2007). http://jgaa.info/vol

  54. P. Ježek, R. Moucek, EEG/ERP portal–semantic web extension: generating ontology from object oriented model, in 2010 Second WRI Global Congress on Intelligent Systems (IEEE, 2010), pp. 392–395

    Google Scholar 

  55. N. Mukherjee, S. Neogy, S. Chattopadhyay, Big Data in ehealthcare: Challenges and Perspectives (CRC Press, 2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Poulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poulos, M., Papavlasopoulos, S. (2021). Metadata Web Searching EEG Signal. In: Tsihrintzis, G., Virvou, M. (eds) Advances in Core Computer Science-Based Technologies. Learning and Analytics in Intelligent Systems, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-41196-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41196-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41195-4

  • Online ISBN: 978-3-030-41196-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics