Skip to main content

Tier-Based Directed Weighted Graph Coloring Algorithm for Device-to-Device Underlay Cellular Networks

  • Conference paper
  • First Online:
  • 601 Accesses

Abstract

Device-to-Device (D2D) communication has been recognized as a promising technology in 5G. Due to its short-range direct communication, D2D improves network capacity and spectral efficiency. However, interference management is more complex for D2D underlaying cellular networks compared with traditional cellular networks. In this paper, we study channel allocation in D2D underlaying cellular networks. A tier-based directed weighted graph coloring algorithm (TDWGCA) is proposed to solve cumulative interference problem. The proposed algorithm is composed of two stages. For the first stage, the tier-based directed weighted graph is constructed to formulate the interference relationship among users. For the second stage, the maximum potential interference based coloring algorithm (MPICA) is proposed to color the graph. Different from the hypergraph previously investigated in channel allocation, our proposed graph reduces the complexity of graph construction significantly. Simulation results show that the proposed algorithm could better eliminate cumulative interference compared with the hypergraph based algorithm and thus the system capacity is improved.

This work is supported in part by the National Natural Science Foundation of China (No. 61631004) and the National Science and Technology Major Project of China under Grant 2016ZX03001017.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asadi, A., Wang, Q., Mancuso, V.: A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutor. 16(4), 1801–1819 (2014)

    Article  Google Scholar 

  2. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C.B., Hugl, K.: Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)

    Article  Google Scholar 

  3. Yin, R., Zhong, C., Yu, G., Zhang, Z., Wong, K.K., Chen, X.: Joint spectrum and power allocation for D2D communications underlaying cellular networks. IEEE Trans. Veh. Technol. 65(4), 2182–2195 (2016)

    Article  Google Scholar 

  4. Zhao, H., Ding, K., Sarkar, N.I., Wei, J., Xiong, J.: A simple distributed channel allocation algorithm for D2D communication pairs. IEEE Trans. Veh. Technol. 67(11), 10960–10969 (2018)

    Article  Google Scholar 

  5. Kazmi, S.M.A., et al.: Mode selection and resource allocation in device-to-device communications: a matching game approach. IEEE Trans. Mob. Comput. 16(11), 3126–3141 (2017)

    Article  Google Scholar 

  6. Zhang, F., Zhou, X., Sun, M.: Constrained VCG auction for spatial spectrum reuse with flexible channel evaluations. In: 2017 IEEE Global Communications Conference (GLOBECOM 2017), pp. 1–6, Singapore (2017)

    Google Scholar 

  7. Joo, C., Lin, X., Ryu, J., Shroff, N.B.: Distributed greedy approximation to maximum weighted independent set for scheduling with fading channels. IEEE/ACM Trans. Netw. 24(3), 1476–1488 (2016)

    Article  Google Scholar 

  8. Mili, M.R., Tehrani, P., Bennis, M.: Energy-efficient power allocation in OFDMA D2D communication by multiobjective optimization. IEEE Wirel. Commun. Lett. 5(6), 668–671 (2016)

    Article  Google Scholar 

  9. Zhang, H., Wang, T., Song, L., Han, Z.: Graph-based resource allocation for D2D communications underlaying cellular networks. In: 2013 IEEE/CIC International Conference on Communications in China - Workshops (CIC/ICCC), pp. 187–192, Xi’an (2013)

    Google Scholar 

  10. Cai, X., Zheng, J., Zhang, Y.: A graph-coloring based resource allocation algorithm for D2D communication in cellular networks. In: 2015 IEEE International Conference on Communications (ICC), pp. 5429–5434, London (2015)

    Google Scholar 

  11. Zhang, R., Cheng, X., Yang, L., Jiao, B.: Interference graph-based resource allocation (InGRA) for D2D communications underlaying cellular networks. IEEE Trans. Veh. Technol. 64(8), 3844–3850 (2015)

    Article  Google Scholar 

  12. Zhao, L., Wang, H., Zhong, X.: Interference graph based channel assignment algorithm for D2D cellular networks. IEEE Access 6, 3270–3279 (2018)

    Article  Google Scholar 

  13. Zhang, H., Song, L., Han, Z.: Radio resource allocation for device-to-device underlay communication using hypergraph theory. IEEE Trans. Wirel. Commun. 15(7), 4852–4861 (2016)

    Google Scholar 

  14. Sun, Y., Du, Z., Xu, Y., Zhang, Y., Jia, L., Anpalagan, A.: Directed-hypergraph-based channel allocation for ultradense cloud D2D communications with asymmetric interference. IEEE Trans. Veh. Technol. 67(8), 7712–7718 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yating Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Peng, T. (2020). Tier-Based Directed Weighted Graph Coloring Algorithm for Device-to-Device Underlay Cellular Networks. In: Gao, H., Feng, Z., Yu, J., Wu, J. (eds) Communications and Networking. ChinaCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-030-41117-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41117-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41116-9

  • Online ISBN: 978-3-030-41117-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics