Skip to main content

Energy Efficient Computation Offloading for Energy Harvesting-Enabled Heterogeneous Cellular Networks (Workshop)

  • Conference paper
  • First Online:
  • 586 Accesses

Abstract

Mobile edge computing (MEC) is regarded as an emerging paradigm of computation that aims at reducing computation latency and improving quality of experience. In this paper, we consider an MEC-enabled heterogeneous cellular network (HCN) consisting of one macro base station (MBS), one small base station (SBS) and a number of users. By defining workload execution cost as the weighted sum of the energy consumption of the MBS and the workload dropping cost, the joint computation offloading and resource allocation problem is formulated as a workload execution cost minimization problem under the constraints of computation offloading, resource allocation and delay tolerant, etc. As the formulated optimization problem is a Markov decision process (MDP)-based offloading problem, we propose a hotbooting Q-learning-based algorithm to obtain the optimal strategy. Numerical results demonstrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  2. Guo, H., Liu, J., Zhang, J.: Efficient computation offloading for multi-access edge computing in 5G HetNets. In: Proceedings of the IEEE International Conference on Communication (ICC), Kansas City, MO, pp. 1–6 (2018)

    Google Scholar 

  3. Dai, Y., Xu, D., Maharjan, S., Zhang, Y.: Joint computation offloading and user association in multi-task mobile edge computing. IEEE Trans. Veh. Technol. 67(12), 12313–12325 (2018)

    Article  Google Scholar 

  4. Wu, H., Chen, L., Shen, C., Wen, W., Xu, J.: Online geographical load balancing for energy-harvesting mobile edge computing. In: Proceedings of the IEEE International Conference on Communication (ICC), pp. 1–6, May 2018

    Google Scholar 

  5. Dhillon, H.S., Li, Y., Nuggehalli, P., Pi, Z., Andrews, J.G.: Fundamentals of heterogeneous cellular networks with energy harvesting. IEEE Trans. Wirel. Commun. 13(5), 2782–2797 (2014)

    Article  Google Scholar 

  6. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

    Article  Google Scholar 

  7. Pham, Q., Le, L.B., Chung, S., Hwang, W.: Mobile edge computing with wireless backhaul: joint task offloading and resource allocation. IEEE Access 7, 16444–16459 (2019)

    Article  Google Scholar 

  8. Song, Z., Liu, Y., Sun, X.: Joint radio and computational resource allocation for NOMA-based mobile edge computing in heterogeneous networks. IEEE Commun. Lett. 22(12), 2559–2562 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengqi Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, M., Chai, R., Chen, Q. (2020). Energy Efficient Computation Offloading for Energy Harvesting-Enabled Heterogeneous Cellular Networks (Workshop). In: Gao, H., Feng, Z., Yu, J., Wu, J. (eds) Communications and Networking. ChinaCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-030-41117-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41117-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41116-9

  • Online ISBN: 978-3-030-41117-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics