Skip to main content

Joint Collaborative Task Offloading for Cost-Efficient Applications in Edge Computing

  • Conference paper
  • First Online:
  • 1097 Accesses

Abstract

Edge computing is a new network model providing low-latency service with low bandwidth cost for the users by nearby edge servers. Due to the limited computational capacity of edge servers and devices, some edge servers need to offload some tasks to other servers in the edge network. Although offloading task to other edge servers may improve the service quality, the offloading process will be charged by the operator. In this paper, the goal is to determine the task offloading decisions of all the edge servers in the network. A model is designed with different types of cost in edge computing, where the overall cost of the system reflects the performance of the network. We formulate a cost minimization problem which is NP-hard. To solve the NP-hard problem, we propose a Joint Collaborative Task Offloading algorithm by adopting the optimization process in nearby edge servers. In our algorithm, an edge server can only offload its tasks to other edge servers within a neighborhood range. Based on the real-world data set, an adequate range is determined for the edge computing network. In cases of different density of tasks, the evaluations demonstrate that our algorithm has a good performance in term of overall cost, which outperforms an algorithm without considering the influence of neighborhood range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper. Technical report (2019)

    Google Scholar 

  2. Chen, L., Xu, J.: Socially trusted collaborative edge computing in ultra dense networks. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, p. 9. ACM (2017)

    Google Scholar 

  3. Li, Y., Wang, S.: An energy-aware edge server placement algorithm in mobile edge computing. In: 2018 IEEE International Conference on Edge Computing (EDGE), pp. 66–73. IEEE (2018)

    Google Scholar 

  4. Lyu, X., Ren, C., Ni, W., Tian, H., Liu, R.P.: Distributed optimization of collaborative regions in large-scale in homogeneous fog computing. IEEE J. Sel. Areas Commun. 36(3), 574–586 (2018)

    Article  Google Scholar 

  5. Pasteris, S., Wang, S., Herbster, M., He, T.: Service placement with provable guarantees in heterogeneous edge computing systems. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 514–522. IEEE (2019)

    Google Scholar 

  6. Pu, L., Chen, X., Xu, J., Fu, X.: D2D fogging: an energy-efficient and incentive-aware task offloading framework via network-assisted D2D collaboration. IEEE J. Sel. Areas Commun. 34(12), 3887–3901 (2016)

    Article  Google Scholar 

  7. Xiao, Y., Krunz, M.: QoE and power efficiency tradeoff for fog computing networks with fog node cooperation. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9. IEEE (2017)

    Google Scholar 

  8. Wang, L., Jiao, L., He, T., Li, J., Mühlhäuser, M.: Service entity placement for social virtual reality applications in edge computing. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 468–476. IEEE (2018)

    Google Scholar 

  9. Wang, L., Jiao, L., Li, J., Mühlhäuser, M.: Online resource allocation for arbitrary user mobility in distributed edge clouds. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1281–1290. IEEE (2017)

    Google Scholar 

  10. Hou, I., Zhao, T., Wang, S., Chan, K., et al.: Asymptotically optimal algorithm for online reconfiguration of edge-clouds. In: Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 291–300. ACM (2016)

    Google Scholar 

  11. Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 207–215. IEEE (2018)

    Google Scholar 

  12. Zhou, Z., Chen, X., Wu, W., Wu, D., Zhang, J.: Predictive online server provisioning for cost-efficient IoT data streaming across collaborative edges. In: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 321–330. ACM (2019)

    Google Scholar 

  13. Sundar, S., Liang, B.: Offloading dependent tasks with communication delay and deadline constraint. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 37–45. IEEE (2018)

    Google Scholar 

  14. Krarup, J., Pruzen, P.M.: The simple plant location problem: survey and synthesis. Eur. J. Oper. Res. 12, 36–81 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This paper was partly supported by National Key RD Program of China Grant (No. 2018YFB2100302, No. 2017YFB1003000), NSFC Grant (No. 61671478, No. 61672342, No. 61532012, No. 61602303), the Science&Technology Innovation Program of Shanghai Grant (No. 17511105103, No. 18510761200) and the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant (No. 2018D06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaochen Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, C., Qin, Z., Gan, X., Fu, L. (2020). Joint Collaborative Task Offloading for Cost-Efficient Applications in Edge Computing. In: Gao, H., Feng, Z., Yu, J., Wu, J. (eds) Communications and Networking. ChinaCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-41114-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41114-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41113-8

  • Online ISBN: 978-3-030-41114-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics