Skip to main content

Can Sensors Effectively Support Learning?

  • Chapter
  • First Online:
Artificial Intelligence Supported Educational Technologies

Abstract

Recent advances in sensor technology allow us to investigate the physical, emotional, and cognitive state of a learner, providing more data for user-centered learning analytics, adaptive learning, and self-reflection. While the usage of physiological sensors for health applications has been thoroughly investigated, using sensors in a learning environment is very challenging, especially when sensors should be nonintrusive, not distracting from learning. In our project “Learning Analytics for Sensor-Based Adaptive Learning,” we address a wide range of challenges and research questions, from the development of a wearable sensor device for learners to the design of a sensor-based learning companion, from multimodal learning analytics to adaptive learning solutions in real-life environments. In this article, we show first steps toward emotion recognition, using a mixed-methods approach comprising qualitative and quantitative analysis, machine learning, and fuzzy logic. Finally, we discuss our interdisciplinary approach needed to resolve some of the complex questions related to sensor-based learning support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nae.edu

  2. 2.

    http://www.engineeringchallenges.org

  3. 3.

    https://www.technik-zum-menschen-bringen.de/dateien/service/2018-projektsteckbriefe-erfahrbares-lernen.pdf

  4. 4.

    http://www.htw-berlin.de

  5. 5.

    http://www.hu-berlin.de

  6. 6.

    http://www.iwm-tuebingen.de

  7. 7.

    http://www.neocosmo.de

  8. 8.

    http://www.promotion-software.de

  9. 9.

    http://www.sgm-berlin.com

  10. 10.

    http://www.empatica.com

  11. 11.

    https://bitalino.com/en/

  12. 12.

    BITalino (r)evolution Plugged Kit BT 10.

  13. 13.

    https://www.learntec.de/en/

  14. 14.

    https://xapi.com

  15. 15.

    https://xapi.com/learning-record-store

  16. 16.

    http://promotion-software.de

  17. 17.

    http://neocosmo.de

  18. 18.

    Förderkennzeichen 16SV7534K.

References

  • Ayata, D., Yaslan, Y., & Kamaşak, M. (2017). Emotion recognition via galvanic skin response: Comparison of machine learning algorithms and feature extraction methods. Istanbul University-Journal of Electrical & Electronics Engineering, 17(1), 3147–3156.

    Google Scholar 

  • Bakharia, A., Kitto, K., Pardo, A., Gašević, D., & Dawson, S. (2016, April). Recipe for success: Lessons learnt from using xAPI within the connected learning analytics toolkit. In Proceedings of the sixth international conference on learning analytics & knowledge (pp. 378–382). ACM.

    Google Scholar 

  • Bartram, L., Patra, A., & Stone, M. (2017, May). Affective color in visualization. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 1364–1374). ACM.

    Google Scholar 

  • Boucsein, W. (2012). Electrodermal activity. Boston: Springer Science & Business Media.

    Book  Google Scholar 

  • Bradley, M. M., & Lang, P. J. (2007). The International Affective Picture System (IAPS) in the study of emotion and attention. In J. A. Coan & J. J. B. Allen (Eds.), Handbook of emotion elicitation and assessment (pp. 29–46). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Burleson, W., & Picard, R. W. (2004, August). Affective agents: Sustaining motivation to learn through failure and a state of stuck. In workshop on social and emotional intelligence in learning environments.

    Google Scholar 

  • Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., et al. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. In task force of the European society of cardiology and the North American society of pacing and electrophysiology.

    Google Scholar 

  • Cercone, K. (2008). Characteristics of adult learners with implications for online learning design. AACE Journal, 16(2), 137–159.

    Google Scholar 

  • Chanel, G., & Mühl, C. (2015). Connecting brains and bodies: Applying physiological computing to support social interaction. Interacting with Computers, 27(5), 534–550.

    Article  Google Scholar 

  • Conati, C., Chabbal, R., & Maclaren, H. (2003, June). A study on using biometric sensors for monitoring user emotions in educational games. In Workshop on assessing and adapting to user attitudes and affect: Why, when and how.

    Google Scholar 

  • Cook, M. (1979). Perceiving others: The psychology of interpersonal perception (Vol. 675). New York/London: Taylor & Francis.

    Google Scholar 

  • D’Mello, S. (2013). A selective meta-analysis on the relative incidence of discrete affective states during learning with technology. Journal of Educational Psychology, 105(4), 1082.

    Article  Google Scholar 

  • Di Mitri, D., Schneider, J., Specht, M., & Drachsler, H. (2018). From signals to knowledge: A conceptual model for multimodal learning analytics. Journal of Computer Assisted Learning, 34(4), 338–349.

    Article  Google Scholar 

  • Drachsler, H., & Greller, W. (2016, April). Privacy and analytics: It’s a DELICATE issue a checklist for trusted learning analytics. In Proceedings of the sixth international conference on learning analytics & knowledge (pp. 89–98). ACM.

    Google Scholar 

  • Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221(4616), 1208–1210.

    Article  Google Scholar 

  • Fairclough, S. H., Venables, L., & Tattersall, A. (2005). The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology, 56(2), 171–184.

    Article  Google Scholar 

  • Ferdinando, H., Seppänen, T., & Alasaarela, E. (2018, June). Emotion recognition using neighborhood components analysis and ECG/HRV-based. In Pattern recognition applications and methods: 6th international conference, ICPRAM 2017, Porto, Portugal, February 24–26, 2017, Revised Selected Papers (Vol. 10857, p. 99). Springer.

    Google Scholar 

  • Fortenbacher, A., Ninaus, M., Yun, H., Helbig, R., & Moeller, K. (2019). Sensor based adaptive learning-lessons learned. DELFI 2019.

    Google Scholar 

  • Fortenbacher, A., Pinkwart, N., & Yun, H. (2017, March). [LISA] learning analytics for sensor-based adaptive learning. In Proceedings of the seventh international learning analytics & knowledge conference (pp. 592–593). ACM.

    Google Scholar 

  • Freire, C., Ramos, R., Puertas, R., Lopez-Espinosa, M. J., Julvez, J., Aguilera, I., et al. (2010). Association of traffic-related air pollution with cognitive development in children. Journal of Epidemiology & Community Health, 64(3), 223–228.

    Article  Google Scholar 

  • Gruber, J., Mennin, D. S., Fields, A., Purcell, A., & Murray, G. (2015). Heart rate variability as a potential indicator of positive valence system disturbance: A proof of concept investigation. International Journal of Psychophysiology, 98(2), 240–248.

    Article  Google Scholar 

  • Gulz, A., & Haake, M. (2006). Virtual pedagogical agents–design guidelines regarding visual appearance and pedagogical roles. Current developments in technology-assisted education,© FORMATEX 2006.

    Google Scholar 

  • Hwang, B., You, J., Vaessen, T., Myin-Germeys, I., Park, C., & Zhang, B. T. (2018). Deep ECGNet: An optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals. Telemedicine Journal and e-Health, 24(10), 753–772.

    Article  Google Scholar 

  • Isbister, K. (2006). Better game characters by design: A psychological approach. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421.

    Article  Google Scholar 

  • Lang, P., & Bradley, M. M. (2007). The International Affective Picture System (IAPS) in the study of emotion and attention. Handbook of Emotion Elicitation and Assessment, 29.

    Google Scholar 

  • Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50(5), 372.

    Article  Google Scholar 

  • Lanzetta, J. T., Cartwright-Smith, J., & Eleck, R. E. (1976). Effects of nonverbal dissimulation on emotional experience and autonomic arousal. Journal of Personality and Social Psychology, 33(3), 354.

    Article  Google Scholar 

  • Larsen, J. T., Berntson, G. G., Poehlmann, K. M., Ito, T. A., & Cacioppo, J. T. (2008). The psychophysiology of emotion. Handbook of Emotions, 3, 180–195.

    Google Scholar 

  • Levenson, R. W., Ekman, P., & Friesen, W. V. (1990). Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology, 27(4), 363–384.

    Article  Google Scholar 

  • Libby Jr., W. L., Lacey, B. C., & Lacey, J. I. (1973). Pupillary and cardiac activity during visual attention. Psychophysiology, 10(3), 270–294.

    Article  Google Scholar 

  • Malkawi, M., & Murad, O. (2013). Artificial neuro fuzzy logic system for detecting human emotions. Human-centric Computing and Information Sciences, 3(1), 3.

    Article  Google Scholar 

  • Mandryk, R. L., & Atkins, M. S. (2007). A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. International Journal of Human-Computer Studies, 65(4), 329–347.

    Article  Google Scholar 

  • McCloud, S., & Manning, A. D. (1998). Understanding comics: The invisible art. IEEE Transactions on Professional Communications, 41(1), 66–69.

    Article  Google Scholar 

  • Pecchinenda, A. (1996). The affective significance of skin conductance activity during a difficult problem-solving task. Cognition & Emotion, 10(5), 481–504.

    Article  Google Scholar 

  • Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis & Machine Intelligence, 23(10), 1175–1191.

    Article  Google Scholar 

  • Ringeval, F., Sonderegger, A., Sauer, J., & Lalanne, D. (2013, April). Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG) (pp. 1–8). IEEE, New York.

    Google Scholar 

  • Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161.

    Article  Google Scholar 

  • Scheibe, S., & Fortenbacher, A. (2019). Heart Rate Variability als Indikator für den emotionalen Zustand eines Lernenden. In Proceedings of DELFI Workshops 2019. Gesellschaft für Informatik eVz.

    Google Scholar 

  • Schneider, J., Börner, D., Van Rosmalen, P., & Specht, M. (2015). Augmenting the senses: A review on sensor-based learning support. Sensors, 15(2), 4097–4133.

    Article  Google Scholar 

  • Tomaka, J., Blascovich, J., Kelsey, R. M., & Leitten, C. L. (1993). Subjective, physiological, and behavioral effects of threat and challenge appraisal. Journal of Personality and Social Psychology, 65(2), 248.

    Article  Google Scholar 

  • Vrana, S. R., Cuthbert, B. N., & Lang, P. J. (1986). Fear imagery and text processing. Psychophysiology, 23(3), 247–253.

    Article  Google Scholar 

  • Winton, W. M., Putnam, L. E., & Krauss, R. M. (1984). Facial and autonomic manifestations of the dimensional structure of emotion. Journal of Experimental Social Psychology, 20(3), 195–216.

    Article  Google Scholar 

  • Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Amsterdam: Morgan Kaufmann.

    Google Scholar 

  • Yun, H., Fortenbacher, A., Helbig, R., & Pinkwart, N. (2019). In search of learning indicators: A study on sensor data and IAPS emotional pictures.

    Google Scholar 

  • Yun, H., Fortenbacher, A., & Pinkwart, N. (2017). Improving a mobile learning companion for self-regulated learning using sensors. In CSEDU (1) (pp. 531–536).

    Google Scholar 

  • Yun, H., Fortenbacher, A., & Scaff, P. (2019). Visualization of learning process and learner’s emotions: Current state, limitations and future work. In Weizenbaum conference (p. 4). DEU Berlin.

    Google Scholar 

  • Yun, H., Israel, J. H., Fortenbacher, A., Rott, H., & Metzler, D. (2017). User-centric approach to the design of a mobile learning companion.

    Google Scholar 

  • Yun, H., Riazy, S., Fortenbacher, A., & Simbeck, K. (2019). Code of practice for sensor-based learning. DELFI 2019 Berlin.

    Google Scholar 

  • Zhang, X., Chen, X., & Zhang, X. (2018). The impact of exposure to air pollution on cognitive performance. Proceedings of the National Academy of Sciences, 115(37), 9193–9197.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Ministry for Education and Research (BMBF)Footnote 18

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Fortenbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fortenbacher, A., Yun, H. (2020). Can Sensors Effectively Support Learning?. In: Pinkwart, N., Liu, S. (eds) Artificial Intelligence Supported Educational Technologies. Advances in Analytics for Learning and Teaching. Springer, Cham. https://doi.org/10.1007/978-3-030-41099-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41099-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41098-8

  • Online ISBN: 978-3-030-41099-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics