Skip to main content

Probabilistic Sequence Modeling

  • Chapter
  • First Online:
Book cover Machine Learning in Finance

Abstract

This chapter presents a powerful class of probabilistic models for financial data. Many of these models overcome some of the severe stationarity limitations of the frequentist models in the previous chapters. The fitting procedure demonstrated is also different—the use of Kalman filtering algorithms for state-space models rather than maximum likelihood estimation or Bayesian inference. Simple examples of hidden Markov models and particle filters in finance and various algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dynamic Bayesian networks models are a graphical model used to model dynamic processes through hidden state evolution.

  2. 2.

    With the exception of heteroscedastic modeling in Chap. 6.

  3. 3.

    An acronym for Bayesian inference Using Gibbs Sampling.

  4. 4.

    Sometimes the Gibbs sampler is referred to as data augmentation following this paper.

References

  • Black, F. (1976). Studies of stock price volatility changes. In Proceedings of the Business and Economic Statistics Section.

    Google Scholar 

  • Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics,182(1), 1–69.

    Article  Google Scholar 

  • Crisan, D., & Míguez, J. (2013). Nested particle filters for online parameter estimation in discrete-time state-space Markov models. ArXiv:1308.1883.

    Google Scholar 

  • Gelfand, A. E., & Smith, A. F. M. (1990, June). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association,85(410), 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Geman, S. J., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,6, 721–741.

    Article  MATH  Google Scholar 

  • Gilks, W. R., & Wild, P. P. (1992). Adaptive rejection sampling for Gibbs sampling, Vol. 41, pp. 337–348.

    MATH  Google Scholar 

  • Gill, P. E., Murray, W., & Wright, M. H. (1982). Practical optimization. Emerald Group Publishing Limited.

    MATH  Google Scholar 

  • Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing).

    Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika,82(4), 711–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika,57(1), 97–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S., Shephard, N., & Chib, S. (1998, July). Stochastic volatility: Likelihood inference and comparison with ARCH models. The Review of Economic Studies,65(3), 361–393.

    Article  MATH  Google Scholar 

  • Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-Gaussian nonlinear state space models. In Proceedings of the 2nd U.S.-Japan Joint Seminar on Statistical Time Series Analysis (pp. 110–131).

    Google Scholar 

  • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics,5(1), 1–25.

    MathSciNet  Google Scholar 

  • Lunn, D. J., Thomas, A., Best, N. G., & Spiegelhalter, D. (2000). WinBUGS – a Bayesian modelling framework: Concepts, structure and extensibility. Statistics and Computing,10, 325–337.

    Article  Google Scholar 

  • Malik, S., & Pitt, M. K. (2009, April). Modelling stochastic volatility with leverage and jumps: A simulated maximum likelihood approach via particle filtering. Warwick Economic Research Papers 897, The University of Warwick, Department of Economics, Coventry CV4 7AL.

    Google Scholar 

  • Malik, S., & Pitt, M. K. (2011a, February). Modelling stochastic volatility with leverage and jumps: A simulated maximum likelihood approach via particle filtering. document de travail 318, Banque de France Eurosystème.

    Google Scholar 

  • Malik, S., & Pitt, M. K. (2011b). Particle filters for continuous likelihood evaluation and maximisation. Journal of Econometrics,165, 190–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics,21.

    Google Scholar 

  • Meyer, R., & Yu, J. (2000). BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal,3, 198–215.

    Article  MATH  Google Scholar 

  • Naesseth, C. A., Lindsten, F., & Schön, T. B. (2015). Nested sequential Monte Carlo methods. In Proceedings of the 32nd International Conference on Machine Learning.

    Google Scholar 

  • Pitt, M. K., Malik, S., & Doucet, A. (2014). Simulated likelihood inference for stochastic volatility models using continuous particle filtering. Annals of the Institute of Statistical Mathematics,66, 527–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Ritter, C., & Tanner, M. A. (1992). Facilitating the Gibbs sampler: The Gibbs stopper and the Griddy-Gibbs sampler. Journal of the American Statistical Association,87(419), 861–868.

    Article  Google Scholar 

  • Sayed, A. H. (2008). Adaptive filters. Wiley-Interscience.

    Book  Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N. G., & Gilks, W. R. (1996, August). BUGS 0.5: Bayesian inference using Gibbs sampling manual (version ii). Robinson Way, Cambridge CB2 2SR: MRC Biostatistics Unit, Institute of Public Health.

    Google Scholar 

  • Tanner, M. A., & Wong, W. H. (1987, June). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association,82(398), 528–540.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, S. J. (1982). Time series analysis: theory and practice. Chapter Financial returns modelled by the product of two stochastic processes, a study of daily sugar prices, pp. 203–226. North-Holland.

    Google Scholar 

  • Vega, L. R., & H. Rey (2013). A rapid introduction to adaptive filtering. Springer Briefs in Electrical and Computer Engineering. Springer.

    Book  Google Scholar 

  • Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics,127, 165–178.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Python Notebooks

The notebooks provided in the accompanying source code repository are designed to gain familiarity with how to implement the Viterbi algorithm and particle filtering for stochastic volatility model calibration. Further details of the notebooks are included in the README.md file.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dixon, M.F., Halperin, I., Bilokon, P. (2020). Probabilistic Sequence Modeling. In: Machine Learning in Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-41068-1_7

Download citation

Publish with us

Policies and ethics