Skip to main content

Impact of Aerodynamics on Blade Design

  • Chapter
  • First Online:
Introduction to Wind Turbine Aerodynamics

Part of the book series: Green Energy and Technology ((GREEN))

  • 1518 Accesses

Abstract

Now having introduced all knowledge from fluid mechanics, it is high time to try to give an overview on what is really used in practical wind turbine blade design. Referring to Chap. 10 and especially Fig. 10.1 we see that with the development of huge offshore wind turbines up to 170 m rotor diameter, a period of exponential growth has started again after some years of dormancy.

So wie die Sache steht, ist das Beste, auf das zu hoffen ist, ein Geschlecht erfinderischer Zwerge, das für alles zu mieten ist (B. Brecht, Life of Galileo, 1941), [6]. (As things are, the best that can be hoped for is a generation of inventive dwarfs who can be hired for any purpose.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This open-jet wind tunnel has a comparably high turbulence intensity of more than 1%.

  2. 2.

    This textbook from the late 1980s is surely out-dated but may help to bridge the gap between engineering mechanics and black-box tools like FLEX5 or BLADED.

  3. 3.

    Much of the underlying principle (low induction) has recently been re-introduced for the design of 10\(+\) MW ordinary wind turbines (Chap. 10, [3]).

References

  1. Althaus D (1996) Niedriggeschwindigkeitsprofile: Profilentwicklungen und Polarenmessungen im Laminarwindkanal des Institutes für Aerodynamik und Gasdynamik der Universität Stuttgart. Vieweg, Braunschweig (in German)

    Google Scholar 

  2. Baker JP, van Dam CP, Gilbert BL (2008) Flat-back airfoil wind tunnel experiment, SAND2008-2008, Sandia National Laboratories, Albuquerque, NM, USA

    Google Scholar 

  3. Björk A (1990) Coordinates and calculations for the FFA-W1-xxx, FFA-W2-xxx and FFA-W3-xxx series of airfoils for horizontal axis wind turbines, FFA TN 1990–15, Stockholm, Sweden

    Google Scholar 

  4. Björk A (1996) A guide to data files from wind tunnel test of a FFA-W3-211 airfoil at FFA, FFAP-V-019, Stockholm, Sweden

    Google Scholar 

  5. Boorsma K, Machielse L, Snel H (2010) Performance analysis of a shrouded rotor for a wind powered vehicle. In: Proceedings of the TORQUE 2010, Crete, Greece

    Google Scholar 

  6. Brecht B (2008) Life of Galileo. Penguin Classics, London, Reprint

    Google Scholar 

  7. Corten G (2007) Vortex blades - proposal to decrease turbine loads by 5%, WindPower 2007, Los Angeles, CA, USA

    Google Scholar 

  8. Det Norske Veritas(DNV)/Riso/o (2002) Guidelines for design of wind turbines, 2nd edn. Roskilde, Denmark

    Google Scholar 

  9. Eggleston DM, Stoddard FS (1987) Wind turbine engineering design. van Nordstand, New York

    Google Scholar 

  10. Eichler K (2013) SSP technology - blade design. In: VDI-conference, rotor blades of wind turbines, Hamburg, Germany, 17–18 April 2013

    Google Scholar 

  11. Fuglsang P (2004) Aero-elastic blade design - slender blades with high lift airfoils compared to traditional blades. Wind turbine blade workshop, Albuquerque, NM, USA

    Google Scholar 

  12. Fuglsang P, Bak C (2004) Development of the Risø wind turbine airfoils. Wind Energy 7(2):145–162

    Google Scholar 

  13. Fuglsang P et al (1998) Wind tunnel tests of the FFA-W3-241, FFA-W3-301 and NACA 63–430 airfoils, Risø-R-1041(EN), Roskilde, Denmark

    Google Scholar 

  14. Germanischer Lloyd Windenergie GmbH (2010) Guidelines for the certification of wind turbines, Hamburg

    Google Scholar 

  15. Grasso F (2012) Design of thick airfoils for wind turbines. Wind turbine blade workshop, Albuquerque, NM, USA

    Google Scholar 

  16. Griffith DT, Ashwill D (2011) The Sandia 100-meter all-glass baseline wind turbine blade: SNL 100-00, SAND2011-3779, Sandia National Laboratories, Albuquerque, NM, USA

    Google Scholar 

  17. Hillmer B et al (2007) Aerodynamic and structural design of MultiMW wind turbine blades beyond 5 MW. J Phys Conf 75:01202

    Article  Google Scholar 

  18. Jaquemotte P (2012) Fertigung von Rotorblättern, Einsatz von Carbonfasern (Manufacturing of rotor blades - use of carbon fibers), Private communication (in German)

    Google Scholar 

  19. Katz J (2006) Aerodynamics of race cars. Annu Rev Fluid Mech 38:27–63

    Article  Google Scholar 

  20. Lehmann J, Kühn M (2009) Mit dem Wind gegen den Wind. Das Windfahrzeug InVentus Ventomobil. Physik in unserer Zeit 4:176–181

    Google Scholar 

  21. Lehmann J, Miller A, Capellaro M, Kühn M (2008) Aerodynamic calculation of the rotor for a wind driven vehicle. In: Proceedings of the DEWEK, Bremen, Germany

    Google Scholar 

  22. Lissaman PBS (2009) Wind turbine airfoils and rotor wake. In: Spera DA (ed) Wind turbine technology, 2nd edn. ASME Press, New York

    Google Scholar 

  23. Ludwig N (2013) Automated processes and cost reductions in rotor blade manufacturing. In: VDI-conference, rotor blades of wind turbines, Hamburg, Germany, 17–18 April 2013

    Google Scholar 

  24. Miley SJ, A catalog of low Reynolds number airfoil data for wind turbine applications, RFP-3387 UC-60, Golden, CO, USA

    Google Scholar 

  25. NN (2004) New rotor-blades - innovative feature, Private communication

    Google Scholar 

  26. NN (2007) IEC publication 61400-1, 3rd edn. International Electro-technical Commission, Geneva

    Google Scholar 

  27. NN (2011) UpWind - design limits and solutions for very large wind turbines, EWEA, Brussels, Belgium

    Google Scholar 

  28. Sieros G et al (2012) Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy. Wind Energy 15(1):3–17

    Article  Google Scholar 

  29. Sørensen JN. Aero-mekanisk model for vindmølledrevet køretøj, Unpublished report, Copenhagen, Denmark (in Danish)

    Google Scholar 

  30. Tangler J, Somers DM (1995) NREL airfoil families for HAW turbine dedicated airfoils. In: Proceedings of the AWEA

    Google Scholar 

  31. Tangler J, Smith B, Jager D (1992) SERI advanced wind turbine blades, NREL/TP-257-4492, Golden, CO, USA

    Google Scholar 

  32. Thiele HM (1983) GROWIAN-Rotorblätter: Fertigungsentwicklung, Bau und Test (GROWIAN’s rotorblades: development, construction and testing), BMFT-FB-T 83–11, Bonn, Germany (in German)

    Google Scholar 

  33. Timmer WA (2007) Wind turbine airfoil design and testing. In: Brouckert J-F (ed) Wind turbine aerodynamics: a state-of-the-art. Lecture series 2007–05. von Karman Institute for Fluid Dynamics, Rhode Saint Genese

    Google Scholar 

  34. Timmer WA, van Rooij RPJOM (2003) Summary of the Delft University wind turbine dedicated airfoils. J Sol Energy Eng 125(4):488–496

    Google Scholar 

  35. Velte CM (2009) Characterization of vortex generator induced flow. PhD thesis, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  36. Vollan A, Komzsik L (2012) Computational techniques of rotor dynamics with the finite element method. CRC Press, Boca Raton

    Google Scholar 

  37. Wood D (2011) Small wind turbines. Springer, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaffarczyk, A.P. (2020). Impact of Aerodynamics on Blade Design. In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-41028-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41028-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41027-8

  • Online ISBN: 978-3-030-41028-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics