Skip to main content

Experiments

  • Chapter
  • First Online:
Introduction to Wind Turbine Aerodynamics

Part of the book series: Green Energy and Technology ((GREEN))

  • 1442 Accesses

Abstract

As we have explained extensively in the previous chapters the blade-element-momentum method describes blades—aerodynamically—as a set of independent 2D airfoils. Therefore, wind tunnel measurement of 2D sections is the basis of all aerodynamical experiments for wind turbines. Fortunately, a lot of experience has been gained for airfoils of airplanes which could be used when special airfoils started to be designed [33] in Chap. 9.

Everybody believes in measurements—except the experimentalist. Nobody believes in theory—except the theorist (Unknown source).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This code is comparable to the so-called Eppler-code [17] in Chap. 3, developed somewhat earlier and was extended to include 3D-effect from stall-delay for rotation in [32].

  2. 2.

    Roughly speaking this is the ratio where a small disturbance has grown to a relevant size.

  3. 3.

    In [15, 16] even a much lager range of \(\nu < 500\) Hz is excluded.

References

  1. Abbot IH, von Doenhoff AE (1958) Theory of Wing Sections. Dover Publication Inc, New York

    Google Scholar 

  2. Ahmad MM (2014) CFD investigations of the flow over FLAT Back Airfoils using OpenFOAM and different turbulence models. MSc thesis, UAS Kiel and FhG IWES, Kiel and Oldenburg, Germany

    Google Scholar 

  3. NN (2000) Basic machine parameters. Paper circulated during NASA Ames blind comparison panel, NREL, Golden, USA

    Google Scholar 

  4. Boorsma K, Schepers JG (2011) Description of experimental setup - MEXICO measurements, ECN-X-11-120, Confidential, ECN, Petten, The Netherlands

    Google Scholar 

  5. Boorsma K (2012) Power and loads for wind turbines in yawed conditions, ECN-E-12-047, ECN, Petten, The Netherlands

    Google Scholar 

  6. Boorsma K, Schepers JG (2018) Description of experimental setup, New Mexico Experiment, version 3 ECN-X-15-093, Petten, The Netherlands

    Google Scholar 

  7. Björck A, Ronsten G, Montgomerie B (1995) Aerodynamic section characteristics of a rotating and non-rotation 2.375 m wind turbine blade, FFA TN 1995-03, Bromma, Sweden

    Google Scholar 

  8. Butterfield CP, Musial WP, Scott GN, Simms DA (1992) NREL combined experimental final report - Phase II, NREL/TP-442-4807, Golden, CO, USA

    Google Scholar 

  9. Dexin H, Thor S-E (1993) The execution of wind energy projects 1986–1992, FFA TN 1993–19, Bromma, Sweden

    Google Scholar 

  10. Dollinger Chr, Balaresque N (2013) Messverfahren zur akustisch-aerodynamischen Optierung von Rotorblättern im Winkanal, priv. comm. (in German)

    Google Scholar 

  11. Elsamprojker A/S (1992) The Tjaæreborg wind turbine, Final Report, CEC, DG XII, contract EN3W.0048.DK, Fredericia, Denmark

    Google Scholar 

  12. Freudenreich K, Kaiser K, Schaffarczyk AP, Winkler H, Stahl B (2004) Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng 28(5):529–546

    Article  Google Scholar 

  13. Haans W (2011) Wind Turbine Aerodynamics in Yaw. PhD thesis, TU Delft, Delft, The Netherlands

    Google Scholar 

  14. International Electro-technical Commission (2013) IEC 61400–12-2, wind turbines - part 12–2: power performance of electricity producing wind turbines based on nacelle anemometry, Switzerland, Geneva

    Google Scholar 

  15. van Groenwoud GJH, Boermans LMM, van Ingen JL (1983) Onderzoek naar de omslag laminair-turbulent van de grenslaag op de rotorbladen vand de 25 m HAT windturbine, Rapport LR-390. Techische Hogeschool Delft, Delft, The Netherlands

    Google Scholar 

  16. van Ingen JL, Schepers JG (2012) Prediction of boundary layer transition on wind turbine blades using \(e^N\)-method and a comparison with measurements, private communication, G Schepers

    Google Scholar 

  17. Lissaman PBS (1983) Low-Reynolds-number airfoils. Ann Rev Fluid Mech 15:223–239

    Article  Google Scholar 

  18. Phisipsen I, Heinrich S, Pengel K, Holthusen H (2015) Test report for measurements on the Mexico wind turbine model in DNW-LLF LLF-2014-19, Marnesse, The Netherlands

    Google Scholar 

  19. Mack LM (1977) Transition and laminar instability, 77–15. JPL Publication, Pasadena

    Google Scholar 

  20. Madsen J, Lenz K, Dynampally P, Sudhakar P (2009) Investigation of grid resolution requirements for Detached Eddy simulation of flow around thick airfoil sections. In: Proceedings of EWEC 2009, Marseille, France

    Google Scholar 

  21. Madsen HA et al (2009) The DAN-AERO MW experiment final report, Risø-R-1726(EN), Roskilde, Denmark

    Google Scholar 

  22. Madsen HA et al (2010) The DAN-AERO MW experiment, AIAA-2010-645, Orlando, FL, USA

    Google Scholar 

  23. Madsen HA, Bak C (2012) The DAN-AERO MW experiment, IEAwind Annex 29 (MeNext) annual meeting, Golden, CO, USA

    Google Scholar 

  24. Aa H, (2019) Madsen Transition, characteristics measured on a 2 MW 80m diameter wind turbine rotor in comparison with transition data from wind tunnel measurement, AIAA-2019-0801, AIAA Scitech, et al (2019) Formum. San Diego, CA, USA, p 2019

    Google Scholar 

  25. Özlem CY, Pires O, Munduate X, Sørensen N, Reichstein T, Schaffarczyk AP, Diakakis K, Papadakis G, Daniele E, Schwarz M, Lutz T, Prieto R (2017) Summary of the blind test campaign to predict high reynolds number performance of DU00-W-210 airfoil. AIAA 2017–0915:915

    Google Scholar 

  26. Özçakmak ÖS, Sœrensen NN, Madsen HA, Sœrensen JN (2019) Laminar-turbulent transition detection on airfoils by high-frequency microphone measurements. WIND ENERGY 22:10. https://doi.org/10.1002/we2361

    Article  Google Scholar 

  27. Ohno D, Romblad J, Rist U (2020) Laminar to turbulent transition at unsteady inflow coditions: numerical simulations with small scale free-stream turbulence, In: Dillmann A et al (eds) DGLR 2018, NNFM 142, pp 214–225

    Google Scholar 

  28. Peltzer I et al (2009) In flight experiments for delaying laminar-turbulent transition on a laminar wing glove. Proc. IMechE 223:619–626

    Article  Google Scholar 

  29. Reeh AD, Weissmüller M, Tropea C (2013) Free-flight investigations of transition under turbulent conditions on a Laminar wing glove, AIAA-2013-0994, Grapevine, TX, USA

    Google Scholar 

  30. Réthoré P-E et al (2011) MEXICO wind tunnel and wind turbine modeled in CFD, AIAA-3373, Orlando, FL, USA

    Google Scholar 

  31. Ronsten G (1992) Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations. J Wind Eng Ind Aerodyn 39:105–118

    Article  Google Scholar 

  32. van Rooij RPJOM (1996) Modifications of the boundary layer calculation in RFOIL for improved airfoil stall prediction, report IW-96087R, TU Delft, Delft, The Netherlands

    Google Scholar 

  33. van Rooij RPJOM (2007) Open air experiments on rotors. In: Brouckert J-F (ed) Wind turbine aerodynamics: a state-of-the-art, Lecture series 2007–05, von Karman institute for fluid dynamics. Rhode Saint Genese, Belgium

    Google Scholar 

  34. Schaffarczyk AP (2008) Numerische Polare eines 46% dicken aerodynamischen Profils, Bericht des Labors für Numerische Mechanik, 58, Kiel Germany (in German, confidential)

    Google Scholar 

  35. Schaffarczyk AP (2011) Expertise zum Einsatz eines Lasermesssystems zur Verbesserung des Energieertrages und Reduzierung der Lasten mittels genauerer Windnachführung einer Windenergieanlage (Use of a Laser system for increased energy yield and load reduction by improved yaw control), report No. 83, Kiel, Germany (in German, confidential)

    Google Scholar 

  36. Schepers JG, Snel H (1995) Dynamic Inflow: Yawed Conditions and partial span pitch control, ECN-C-95-056. Petten, The Netherlands

    Google Scholar 

  37. Schepers JG et al (1997) Final Report of IEA ANNEX XIV, Field Rotor Aerodynamics, ECN-C-97-027, Petten, The Netherlands

    Google Scholar 

  38. Schepers JG (1999) An engineering model for yawed conditions, developed on the basis of wind tunnel measurements. AiAA-paper 1999–0039:164–174

    Google Scholar 

  39. Schepers JG et al (2002) Final Report of IEA ANNEX XVIII, ’Enhanced Field Rotor Aerodynamics Database, ECN-C-02-016, Petten, The Netherlands

    Google Scholar 

  40. Schepers JG (2004) ANNEXLYSE: Validation of yaw models, on basis of detailed aerodynamic measurements on wind turbine blades, ECN-C-04-097, ECN, Petten, The Netherlands

    Google Scholar 

  41. Schepers JG, Snel H (2007) Model experiment in controlled conditions - Final Report, ECN-E-07-042, Petten, The Netherlands

    Google Scholar 

  42. Schepers JG (2012) Engineering models in wind energy aerodynamics. PhD thesis, TU Delft, Delft, The Netherlands

    Google Scholar 

  43. Seitz A (2007) Freiflug-Experimente zum Übergang laminar-turbulent in einer Tragflügelgrenzschicht, DLR-FB-2007-01, Braunschweig, Germany (in German)

    Google Scholar 

  44. Snel H, Schepers JG (1995) Joint investigation of Dynamic Inflow Effects and implementation of an engineering method, ECN-C-94-056, Petten, The Netherlands

    Google Scholar 

  45. Schwab D, Ingwersen S, Schaffarczyk AP, Breuer M (2012) Pressure and hot film measurements on a wind turbine blade operating in the atmosphere. In: Proceedings of the science of making torque from wind, Oldenburg, Germany

    Google Scholar 

  46. Shen WZ, Hansen MOL, Sœrensen JN (2009) Determination of the angle of attack on rotor blades. Wind Energy 12:91–98

    Article  Google Scholar 

  47. Shen WZ, Zhu WJ, Sørensen JN (2012) Actuator line/Navier-Stokes computations for the MEXICO rotor: comparison with detailed measurement. Wind Energy 15:151–169

    Article  Google Scholar 

  48. Simms DA, Hand MM, Fingersh LJ, Jager DW (1999) Unsteady aerodynamics experiment phases II-IV, test configurations and available data campaigns, NREL/TP-500-25950. Golden, CO, USA

    Book  Google Scholar 

  49. Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements, NREL/TP-500-29494. Golden, CO, USA

    Book  Google Scholar 

  50. Sœrensen NN, Michelsen JA, Schreck S (2002) Navier-Stokes prediction of the NREL phase VI rotor in the NASA Ames 80 ft \(\times \) 120 ft wind tunnel. Wind Energy 5:151–169

    Article  Google Scholar 

  51. Somers D (1997) Design and experimental results for the S809 airfoil, NREL/SR-440-6918, Golden, CO, USA

    Google Scholar 

  52. Stahl B, Zhai J (2003) Experimentelle Untersuchung an einem 2D-Windkraftprofil im DNW-Kryo Kanal, DNW-GUK-2003 C 02, Köln, Germany (in German)

    Google Scholar 

  53. Stahl B, Zhai J (2004) Experimentelle Untersuchung an einem 2D-Windkraftprofil bei hohen Reynoldszahlen im DNW-Kryo Kanal, DNW-GUK-2004 C 01, Köln, Germany (in German)

    Google Scholar 

  54. Suder KL, OBrian JE, Roschko E, (1988) Experimental study of bypass transition in a boundary layer, NASA, Technical Memorandum 100913, Cleveland, Ohio, USA

    Google Scholar 

  55. Timmer WA, Schaffarczyk AP (2004) The effect of roughness at high Reynolds numbers on the performance of airfoil DU9 97-W-300Mod. Wind Energy 7(4):295–307

    Article  Google Scholar 

  56. Tangler JL (2004) The Nebulous art of using wind-tunnel airfoil data for predicting rotor performance, NREL/CP-500-31243, Golden Co, USA

    Google Scholar 

  57. Tangler JL, Kocurek JD (2004) Wind turbine post-stall airfoil performance characteristics guidelines for blade-element momentum methods, NREL/CP-500-36900, Golden Co, USA

    Google Scholar 

  58. Wolf M, Jeromin A, Schaffarczyk AP (2010) Numerical prediction of airfoil aerodynamics for thick profiles applied to wind turbine blade roots. In: Proceedings of the DEWEK 2010, Bremen, Germany

    Google Scholar 

  59. Zell PT (1993) Performance and test section flow characteristics oft he national full-scale aerodynamics complex 80- by 120-foot wind tunnel, NASA Technical Memorandum, 103920, Moffett Field, CA, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaffarczyk, A.P. (2020). Experiments. In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-41028-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41028-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41027-8

  • Online ISBN: 978-3-030-41028-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics