Skip to main content

Basic Fluid Mechanics

  • Chapter
  • First Online:
Introduction to Wind Turbine Aerodynamics

Part of the book series: Green Energy and Technology ((GREEN))

  • 1490 Accesses

Abstract

Air regarded as an ideal gas may be described by its mass–density \(\rho = dm/dV\). To adjust its standard value of \(\rho _0 = 1.225\;\mathrm{kg/m}^3\) to other temperatures (\(\vartheta \)) and elevations (H) we may use \( \rho (p,T) = \frac{p}{R_i \cdot T} T = 273.15 + \vartheta R_i = 287 p(z) = p_0 \cdot e^{-z/z_{ref}} p_0 = 1015 \;\mathrm{hPa} z_{ref} = 8400 \;\mathrm{m}.\)

Ich behaupte aber, daß in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne, als darin Mathematik anzutreffen ist (Immanuel Kant, 1786) [32]. (However, I claim that in every special doctrine of nature there can be only as much proper science as there is mathematics therein. (Ref Stanford Encyclopedia of Philosophy)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A tensor may be represented by a n \(\times \) n matrix. However, like scalars and vectors it is defined by its transformation rules under change of coordinates.

  2. 2.

    Heinrich Blasius, \(\star \) 08.09.1883, \(\dagger \) 04.24.1970, was one of L. Prandtl’s first Ph.D. students. His work on forces and Boundary Layer flat plate theory is discussed in almost every textbook of fluid mechanics even today. Less known is that he taught over 50 years (1912–1970) at Ingenieuerschule (Polytechnic—now University of Applied Sciences) Hamburg.

  3. 3.

    It may be of interest to note that here the essential argument is to avoid singularities in terms of infinite velocities, whereas in other applications this does not apply, for example, the infinite pressure at an inclined flat plate.

  4. 4.

    Sometimes called chaos theory.

  5. 5.

    By random we mean that there exist only probabilities for the field quantities, at least in the sense of classical statistical physics.

  6. 6.

    Many well-known physicists worked on turbulence: W. Heisenberg, L. Onsager, Carl-Friedrich von Weizsäcker, to name a few of them. An often repeated quote is that of Richard Feynman, that turbulence is the most important unresolved problem in classical physics.

  7. 7.

    Especially on 2D turbulence for which he was awarded the Dirac Medal in 2003.

  8. 8.

    It is well known from the theory of linear partial differential equations that a number of problems are simplified if formulated by Fourier transform into wavenumber–frequency co-space. The NSE equation then reads as

    figure a
  9. 9.

    Taylor’s frozen turbulence hypothesis has been used here. It states that time series may be used instead of spatially varying values.

References

  1. Abbott I, von Doenhoff A (1959) Theory of wing sections: Including a summary of airfoil data. Dover, Mineola

    Google Scholar 

  2. Bachelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  3. Bachelor GK (1993) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  4. Babinsky H (2003) How do wings work? Phys Educ 8(6):497–503

    Article  Google Scholar 

  5. Boyd JP (1999) The Blasius function in the complex plane. Exp. Math. 8:1–14

    Article  MathSciNet  MATH  Google Scholar 

  6. Böettcher F, Barth St, Peinke J (2006) Small and large scale fluctuations in atmospheric wind speeds. Stoch Environ Res Risk Asses

    Google Scholar 

  7. Blasius H (1908) Grenzschichten in Füßigkeiten mit kleiner Reibung. Z Math Phys 66:1–37 in German

    MathSciNet  MATH  Google Scholar 

  8. Cebeci T, Cousteix J (1999) Modeling and computation of boundary-layer flows. Springer, Berlin

    MATH  Google Scholar 

  9. Chen S et al (2008) Obituary of R. Kraichnan. Phys Today 71:70–71

    Article  Google Scholar 

  10. Chorin A (1993) A mathematical introduction to fluid mechanics. Springer, New York

    Book  MATH  Google Scholar 

  11. Chorin A (1994) Vorticity and turbulence. Springer, New York

    Book  MATH  Google Scholar 

  12. Constantin P (2007) On the Euler Equations of incompressible Fluids. Bull Am Math Sci 44:603–621

    Article  MathSciNet  MATH  Google Scholar 

  13. Darrigol O (2005) Worlds of flow. Oxford University Press, Oxford

    MATH  Google Scholar 

  14. Drela M (1989) XFOIL: an analysis and design system for low reynolds number airfoils. Springer lecture notes in engineering, vol 54. Springer, Berlin, pp 1–12 (1990)

    Google Scholar 

  15. Emeis S (2012) Private communication

    Google Scholar 

  16. Emeis S (2013) Wind energy meteorology. Springer, Berlin

    Book  Google Scholar 

  17. Eppler R (1990) Airfoil design and data. Springer, Berlin

    Book  Google Scholar 

  18. Eckert M (2006) The dawn of fluid mechanics. Wiley-VCH, Weinheim

    Google Scholar 

  19. Fefferman C (2000) Existence & Smoothness of the Navier-Stokes Equations. Clay Mathematics Institute, The Millennium Prize, Problems, Navier-Stokes Equations, Providence, RI, USA

    Google Scholar 

  20. Foias C, Manley O, Rosa R, Temam R (2001) Navier-Stokes equations and turbulence. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  21. Föppl O (1911) Windkräfte an ebenen und gewölbten Platten, Jahrbuch der Motorluftschiff-Studiengesellschaft, Berlin, Germany (in German)

    Google Scholar 

  22. Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  23. Friedrich R, Peinke J (1997) Description of a turbulent cascade by a Fokker-Planck equation. Phys Rev Lett 78:nn mm

    Google Scholar 

  24. Gallavotti G (2002) Foundations of fluid mechanics. Springer, Berlin

    MATH  Google Scholar 

  25. Glauert H (1926) The elements of aerofoil and airscrew theory, Repr, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  26. Hansen MOL (2008) Aerodynamics of wind turbines, 2nd edn. Earthscan, London

    Google Scholar 

  27. Hermandez GGM (2011) Laminar-turbulent transition on wind turbines. Technical University of Copenhagen, Denmark Phd Thesis

    Google Scholar 

  28. Ishihara T, Gotoh T, Kaneda Y (2009) Study of high-reynolds number isotropic turbulence by direct numerical simulation. Annu Rev Fluid Mech 41:165–180

    Article  MathSciNet  MATH  Google Scholar 

  29. Jacobs M (2015) High reynolds number airfoil test in DNW-HDG, DNW-GUK-2014 C04. Göttingen, Germany July

    Google Scholar 

  30. Jeromin A, Schaffarczyk AP (2012) Advanced statistical analysis of high-frequency turbulent pressure fluctuations for on- and off-shore wind. In: Proceedings of Euromech coll 528, Oldenburg, Germany

    Google Scholar 

  31. Jones RT (1990) Wing theory. Princeton University Press, Princeton

    Book  Google Scholar 

  32. Kant I (1786) Metaphysische Anfrangsgründe der Naturwissenschaft. Königsberg, Königreich Preussen

    Google Scholar 

  33. van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  34. Katz J, Plotkin A (2001) Low-speed aerodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  35. Klein F (1910) Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten. Z f Mathematik u Physik 58:259–262

    MATH  Google Scholar 

  36. Kunkel KE, Eloranta EW, Weinman JA (1980) Remote determination of winds, turbulence spectra and energy dissipation rates in the boundary layer from lidar measurements. J Atmos Sci 37(6):978–985

    Article  Google Scholar 

  37. Kurien S, Sreenivasan KR (2001) Measures of anisotropy and the universal properties of turbulence. In: Lesieur M et al (eds) Les Houches summer school in theoretical physics, session LXXIV. Springer, Berlin

    Google Scholar 

  38. Kraichnan R (1994) Anomalous scaling of a randomly advected passive scalar. Phys Rev Lett 72:1016–1019

    Google Scholar 

  39. van Kuik G (2018) The fluid dynamic basis for actuator disc and rotor theories. IOS Press BV (open access). https://doi.org/10.3233/978-1-61499-866-2-i

  40. Lamb SH (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  41. Leishman JG (2002) Challenges in modeling the unsteady aerodynamics of wind turbines, AIA 2002–0037. Reno, NV, USA

    Google Scholar 

  42. Leonordo da Vinci, Verso: studies of flowing water c. 1510–1512, with notes, RL 12660v. Royal Collection Trust, Windsor, UK

    Google Scholar 

  43. Lortz D (1993) Hydrodynamic. B.I.-Wissenschaftsverlag, Mannheim

    Google Scholar 

  44. Lions P-L (1996) Mathematical topics in fluid mechanics: volume 1: incompressible models. Clarendon Press, Oxford

    MATH  Google Scholar 

  45. McComb WD (1992) The physics of fluid turbulence. Clarendon Press, Oxford

    MATH  Google Scholar 

  46. Meier GEA, Sreenivasan KR (eds) (2006) IUTAM symposium on one hundred years of boundary layer research. Springer, Berlin

    Google Scholar 

  47. Majda AJ, Bertozzi AL (2002) Vorticity and incompressible flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  48. Milne-Thomson LM (1996) Theoretical hydrodynamics, 5th edn. Dover Publications, New York

    MATH  Google Scholar 

  49. Monin AS, Yaglom AM (2007) Statistical fluid mechanics, vol 2. Dover Publications, New York

    MATH  Google Scholar 

  50. Munk MM (1992) General theory of thin wing sections, NACA, Report No. 142

    Google Scholar 

  51. Oboukhov AM (1962) Some specific features of atmospheric turbulence. J Fluid Mech 13:82–85

    Article  MathSciNet  MATH  Google Scholar 

  52. Panton RL (1996) Incompressible flow, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  53. Pereira R, Schepers G, Pavel MD (2013) Validation of the Beddoes-Leishmann dynamic stall model for horizontal axis wind turbines using MEXICO data. Wind Energy 16(2):207–219

    Article  Google Scholar 

  54. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  55. Prandtl L, Betz A (2010) Vier Abhandlungen zur Hydrodynamik und Aerodynamik. Universitätsverlag Göttingen, Germany (in german)

    Book  MATH  Google Scholar 

  56. van Rooij RPJOM (1996) Modification of the boundary layer calculation in RFOIL for improved airfoil stall prediction, Internal report IW-96087R, TU Delft, The Netherlands

    Google Scholar 

  57. Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys 20:167–192

    Article  MathSciNet  MATH  Google Scholar 

  58. Ruelle D (1983) Five turbulent problems. Physika 7D:40–44

    MathSciNet  MATH  Google Scholar 

  59. Saffman PG (1992) Vortex dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  60. Schaffarczyk AP et al (2010) A new non-gaussian turbulent wind field generator to estimate design-loads of wind-turbines. In: Peinke J, Oberlack M, Talamelli A (eds) Progress in turbulence III. Springer proceedings in physics, vol 131. Springer, Dordrecht

    Google Scholar 

  61. Schlichting H, Gersten K (2000) Boundary layer theory. Springer, Berlin

    Book  MATH  Google Scholar 

  62. Schubauer GB, Skramstad HK (1943) Laminar-boundary-layer oscillations and transition on a flat plate, NACA-TR-909, 1943/47

    Google Scholar 

  63. Spalart P (1988) Direct simulation of a turbulent boundary layer up to \(r_\theta = 1410\). J Fluid Mech 187:61–98

    Article  MATH  Google Scholar 

  64. White FM (2005) Viscous fluid flow, 3rd edn. Mc Graw Hill, New York

    Google Scholar 

  65. Yates YE (1991) A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings, NASA report, CR-4414

    Google Scholar 

  66. Zdunkowski W, Bott A (2003) Dynamics of the atmosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaffarczyk, A.P. (2020). Basic Fluid Mechanics. In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-41028-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41028-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41027-8

  • Online ISBN: 978-3-030-41028-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics