Skip to main content

Types of Wind Turbines

  • Chapter
  • First Online:
Introduction to Wind Turbine Aerodynamics

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Equation (1.5) from Chap. 1 may also be used to define an efficiency or power coefficient \(0 \le c_P \le 1\):

$$\begin{aligned} c_P = \frac{P}{\frac{\rho }{2} A_r \cdot v^3} \; . \end{aligned}$$

Wind turbine aerodynamic analysis frequently involves the derivation of useful equations and numbers for this quantity.

Ich halte dafür, daß das einzige Ziel der Wissenschaft darin besteht, die Mühseligkeit der menschlichen Existenz zu erleichtern (B. Brecht, Life of Galileo, 1941). [4] (Presumably for the principle that science’s sole aim must be to lighten the burden of human existence.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A more detailed discussion can be found in Sect. 2.6.

References

  1. Ahlers U, Diehl M, Schmehl R (2014) Airborne wind energy. Springer, Berlin

    Google Scholar 

  2. Ashwill TD (1992) Measured data for the Sandia 34-meter vertical axis wind turbine, SAND91-228, Albuquerque, New Mexico, USA

    Google Scholar 

  3. Beurskens J (2014) History of wind energy, chapter 1 of: understanding wind power technology, Schaffarczyk AP (ed). Wiley Ltd, Chichester

    Google Scholar 

  4. Brecht B (2008) Life of Galileo. Penguin Classics, London. (Reprint)

    Google Scholar 

  5. van Bussel GJW (2007) The science of making more torque from wind: diffuser experiments and theory revisited. J Phys: Conf Ser 75:012010

    Google Scholar 

  6. Carne TG et al (1982) Finite element analysis and modal testing of a rotating wind turbine, SAND82-0345. Albuquerque, New Mexico, USA

    Google Scholar 

  7. Darrieus GJM (1931) Turbine having its Rotating shaft transverse to the flow field of the current, US Patent 1 835 018, 1931

    Google Scholar 

  8. Ferreira CS (2009) The near wake of the VAWT. TU Delft, The Netherlands PhD Thesis

    Google Scholar 

  9. FloWind Corporation (1996) Final project report: high-energy rotor development, test and evaluation, SAND96-2205, Albuquerque, New Mexico, USA

    Google Scholar 

  10. Herzog R, Schaffarczyk AP, Wacinski A, Zürchner O (2010) Performance and stability of a counter-rotating windmill using a planetary gearing: measurements and simulation. In: Proceedings of the EWEC 2010, Warsaw, Poland

    Google Scholar 

  11. Homicz GF (1991) Numerical simulation of VAWT stochastic aerodynamic loads produced by atmospheric turbulence: VAWT-SAL Code, SAND91-1124, Albuquerque, New Mexico, USA

    Google Scholar 

  12. International Electro-technical Commission (2011) IEC 61400-2 Ed. 3, Small wind turbines, Geneva, Switzerland (draft)

    Google Scholar 

  13. Kirke BK (1998) Evaluation of self-staring vertical axis wind turbines for stand-alone applications, PhD thesis, Griffith University, Gold Cost, Australia

    Google Scholar 

  14. Lilley GM, Rainbird WJ (1956) A priliminary report onthe design and performance of ducted windmills. Cranfield College of Aeronautics, Bedford

    Google Scholar 

  15. Loyd ML (1980) Crosswind kite power. J Energy 4(3):106–111

    Article  Google Scholar 

  16. Mikkelsen R (2003) Actuator disk methods applied to wind turbines, PhD thesis, The Technical University of Denmark, Lyngby

    Google Scholar 

  17. Nemoto Y, Ushiyama I (2003) Experimental study of a pinwheel-type wind turbine. Wind Eng 27(2):227–235

    Article  Google Scholar 

  18. Nossen P-O et al (2009) WIND POWER - the Danish Way. The Poul la Cour Foundation, Askov, Denmark

    Google Scholar 

  19. Oler JW et al (1983) Dynamic stall regulation of the Darrieus turbine, SAND82-7029, Albuquerque, New Mexico, USA

    Google Scholar 

  20. Paraschivoiu I (2002) Wind turbine design, with emphasis on Darrieus concept. Polytechnic International Press, Montreal, Canada,

    Google Scholar 

  21. Shedahl RE, Feltz LV (1980) Aerodynamic performance of a 5-meter-diameter Darrieus turbine with extruded aluminum NACA-0015 Blades, SAND80-0179, Albuquerque, New Mexico, USA

    Google Scholar 

  22. Shen WZ, Zakkam VAK, Sørensen JN, Appa K (2007) Analysis of counter-rotation wind turbines. J Phys: Conf Ser 75:012003

    Google Scholar 

  23. Spera D (ed) (2009) Wind turbine technology, 2nd edn. ASME Press, New York

    Google Scholar 

  24. Strickland JH (1975) The Darrieus turbine: a performance prediction model using multiple streamtubes, 2014 SAND75-0431, Albuquerque, New Mexico, USA

    Google Scholar 

  25. Templin RJ (1974) Aerodynamic performance theory for the NRC vertical-axis wind turbine, LTR-LA-160, NRC, Canada

    Google Scholar 

  26. Vollan A (1977) Aero elastic stability analysis of a vertical axis wind energy converter, EMSB-44/77, Dornier system, Immenstaad, Germany

    Google Scholar 

  27. de Vries O (1979) Fluid dynamic aspects of wind energy conversion, AGARDograph, No. 243, Neuilly sur Seine, France

    Google Scholar 

  28. Worstell MH (1978) Aerodynamic performance of the 17 meter diameter Darrieus turbine, SAND78-1737, Albuquerque, New Mexico, USA

    Google Scholar 

In German

  1. Bankwitz H et al (1975) Entwicklung einer Windkraftanlage mit vertikaler Achse (Phase I), Abschlußbericht zum Forschungsvorhaben ET-4135 A. Dornier system GmbH, Friedrichshafen, Germany

    Google Scholar 

  2. Binder G et al (1978) Entwicklung eines 5,5 m Ø-Windenenergiekonverters mit vertikaler Drehachse (Phase II), Abschlußbericht zum Forschungsvorhaben T-79-04. Dornier system GmbH, Friedrichshafen, Germany

    Google Scholar 

  3. Dekithsch A et al (1982) Entwicklung eines 5,5 m Durchmesser-Windenenergiekonverters mit vertikaler Drehachse (Phase III), Abschlußbericht zum Forschungsvorhaben T-82-086. Dornier system GmbH, Friedrichshafen, Germany

    Google Scholar 

  4. Eckert L, Seeßelberg C (1990) Analyse und Nachweis der 50 kW - Windnergieanlage (Typ Darrieus), MEB 55/90, internal report. Dornier GmbH, Immenstaad, Germany

    Google Scholar 

  5. Fritzsche A, Jürgensmeyer W, Obermayr E (1990) Auslegung einer Windenergieanlage mit senkrechter Drehachse im Leistungsbereich 350–500 kW, Abschlußbericht zum Forschungsvorhaben 0328958 A. Dornier GmbH, Friedrichshafen, Germany

    Google Scholar 

  6. Henseler H (1990) Eole-D MW Technologieprgrame Darrieus Windenergieanlagen Anpaßentwicklung, 2. Abschlußbericht zum Forschungsvorhaben 0328933 P, Dornier GmbH, Immenstaad, Germany

    Google Scholar 

  7. Meier H, Richter B (1988) Messungen an der Windkraftanlge DAWI 10 und Vergleich mit theoretischen Untersuchungen, Abschlußbericht WE-4/88 zum Forschungsvorhaben 03E–8384-A. Germanischer Lloyd, Hamburg, Germany

    Google Scholar 

  8. Molly J-P (1990) Windenergie - Theorie, Anwendung, Messung, 2nd edn. Verlag C.F. Müller Karsruhe, Germany

    Google Scholar 

  9. NN, Technische Anlage zum Angebot Nr. 3026-0-90, Lieferung und Montage einer 2,25 MW Darrieus-Windenergieanlage EOLE-D, Dornier GmbH, Friedrichshafen, Germany, 1990

    Google Scholar 

  10. Ranneberg M, Wölfle D, Bormann A, Rohde P, Breiopohl F, Basigkeit I (2018) Fast power curve and yield estimation of pumping airborne wind energy system. In: Schmehl R (ed) Airborne wind energy - advances in technology development and research. Springer, Singapore

    Google Scholar 

  11. Schaffarczyk AP (2007) Auslegung einer Kleinwindanlage mit Mantel, aerodynamischen Leistungsdaten, Optimierung des Diffsors, unveröffentlichte und vertrauliche Berichte Nr 49, 50 und 51

    Google Scholar 

  12. Savonius SJ (1930) Windrad mit zwei Hohlflügeln, deren Innenkanten einen zentralen Winddurchlaßspalt freigeben und sich übergreifen. Patentschrift Nr. 495:518

    Google Scholar 

  13. Soler A, Clever HG (1991) Bau, Aufstellung und Erprobung einer 50kW-Darrieus-Windkraftanlage, Abschlussbericht zum Forschungsvorhaben 0328726 P. Dornier GmbH / Flender Werft AG, Immenstaad und Lübeck, Germany in danish

    Google Scholar 

In Danish

  1. Clausen RS, Sønderby IB, Andkjær JA (2006) Eksperimentel og Numerisk Undersøgelse af en Gyro Turbine, Plyteknisk Midtvejsprojekt, Institut for Mekanik, Energi og Konstruktion, The Danish Technical University, Lyngby, Denmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaffarczyk, A.P. (2020). Types of Wind Turbines. In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-41028-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41028-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41027-8

  • Online ISBN: 978-3-030-41028-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics