Skip to main content

Generic Construction of Anonymous Deniable Predicate Authentication Scheme with Revocability

  • Conference paper
  • First Online:
  • 441 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12001))

Abstract

We propose a syntax and security definitions of an anonymous deniable predicate authentication scheme with revocability (rADPA). This new cryptographic primitive is to attain revocation function as well as strong privacy guarantee concerning authentication. Anonymity is for privacy in the authentication protocol, while deniability is for anti-forensics after completion of the protocol. Then, we give a generic construction of our rADPA scheme. Our approach is to build-in the revocable attribute-based encryption scheme proposed by K. Yamada et al. (ESORICS2017) into the anonymous deniable predicate authentication scheme proposed by S. Yamada et al. (PKC2012). Finally, we discuss how our rADPA scheme can be instantiated by employing concrete building blocks in our generic construction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_10

    Chapter  MATH  Google Scholar 

  2. Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_31

    Chapter  Google Scholar 

  3. Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_20

    Chapter  MATH  Google Scholar 

  4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_6

    Chapter  MATH  Google Scholar 

  5. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryption for dual predicate and dual policy via computational encodings. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_5

    Chapter  MATH  Google Scholar 

  6. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988). https://doi.org/10.1016/0022-0000(88)90005-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_16

    Chapter  Google Scholar 

  8. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_10

    Chapter  MATH  Google Scholar 

  9. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

    Chapter  Google Scholar 

  10. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  11. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_14

    Chapter  Google Scholar 

  12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, 30 October–3 November 2006, pp. 89–98 (2006). https://doi.org/10.1145/1180405.1180418

  13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf

  14. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_31

    Chapter  Google Scholar 

  15. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, Princeton (2016)

    MATH  Google Scholar 

  16. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, 28–31 October 2007, pp. 195–203 (2007). https://doi.org/10.1145/1315245.1315270

  17. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  18. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  19. Yamada, K., Attrapadung, N., Emura, K., Hanaoka, G., Tanaka, K.: Generic constructions for fully secure revocable attribute-based encryption. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 532–551. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_29

    Chapter  Google Scholar 

  20. Yamada, K., Attrapadung, N., Emura, K., Hanaoka, G., Tanaka, K.: Generic constructions for fully secure revocable attribute-based encryption. IEICE Trans. 101–A(9), 1456–1472 (2018). https://doi.org/10.1587/transfun.E101.A.1456

    Article  Google Scholar 

  21. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and applications to CCA security and anonymous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_15

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP18K11297. We would like to express our sincere thanks to Keita Emura for his suggestions on the semi-adaptive security. We would like to express our sincere thanks to Nuttapong Attrapadung for his comments on the instantiations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Anada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anada, H., Ueshige, Y. (2020). Generic Construction of Anonymous Deniable Predicate Authentication Scheme with Revocability. In: Simion, E., Géraud-Stewart, R. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2019. Lecture Notes in Computer Science(), vol 12001. Springer, Cham. https://doi.org/10.1007/978-3-030-41025-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41025-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41024-7

  • Online ISBN: 978-3-030-41025-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics