Skip to main content

Current Landscape of Immunotherapy in Genitourinary Malignancies

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1244))

Abstract

The past decade has witnessed a revolution of immune checkpoint inhibitors in the treatment of multiple tumor types, including genitourinary cancers. Immune checkpoint inhibitors improved the treatment outcomes of patients with metastatic renal cell carcinoma and metastatic urothelial carcinoma. In prostate cancer, the role of immunotherapy with checkpoint inhibitors is not yet established, but clinical trials investigating their use are ongoing. Other immunotherapeutic approaches that have been explored in these malignancies include cytokines, vaccines, and cellular therapy. Ongoing studies are exploring the use of immunotherapy combinations as well as combination with chemotherapy and targeted therapy in these types of tumors. The use of immunotherapy beyond the metastatic setting is an active area of research. Moreover, there is a great interest in biomarker development to predict response to immunotherapy and risk of toxicity. This chapter is a comprehensive review of the immunotherapeutic approaches, both approved and investigational, for the treatment of renal cell carcinoma, urothelial carcinoma, and prostate cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Fisher R, Gore M, Larkin J, editors. Current and future systemic treatments for renal cell carcinoma. Elsevier, Chicago, IL, USA. Semin Cancer Biol 2013;23(1):38–45.

    Google Scholar 

  3. Howlader N, Noone A, Krapcho M, Miller D, Bishop K, Kosary C, et al. SEER cancer statistics review, 1975–2014. Bethesda: National Cancer Institute; 2017/2018.

    Google Scholar 

  4. Heng DY, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor–targeted agents: results from a large, multicenter study. J Clin Oncol. 2009;27(34):5794–9.

    Article  CAS  PubMed  Google Scholar 

  5. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999;17(8):2530–40.

    Article  CAS  PubMed  Google Scholar 

  6. Vachhani P, George S. VEGF inhibitors in renal cell carcinoma. Clin Adv Hematol Oncol. 2016;14(12):1016–28.

    PubMed  Google Scholar 

  7. Buti S, Leonetti A, Dallatomasina A, Bersanelli M. Everolimus in the management of metastatic renal cell carcinoma: an evidence-based review of its place in therapy. Core Evid. 2016;11:23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walsh N, Larkin A, Kennedy S, Connolly L, Ballot J, Ooi W, et al. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma. BMC Urol. 2009;9:6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Rep. 2017;9(2):464–77.

    Article  CAS  Google Scholar 

  11. Vogelzang NJ, Priest ER, Borden L. Spontaneous regression of histologically proved pulmonary metastases from renal cell carcinoma: a case with 5-year follow-up. J Urol. 1992;148(4):1247–8.

    Article  CAS  PubMed  Google Scholar 

  12. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001;61(13):5132–6.

    CAS  PubMed  Google Scholar 

  13. Komohara Y, Hasita H, Ohnishi K, Fujiwara Y, Suzu S, Eto M, et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci. 2011;102(7):1424–31.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6 Suppl 1:S55–7.

    CAS  PubMed  Google Scholar 

  15. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13(3):688–96.

    Article  CAS  PubMed  Google Scholar 

  16. McDermott DF, Cheng SC, Signoretti S, Margolin KA, Clark JI, Sosman JA, et al. The high-dose aldesleukin “select” trial: a trial to prospectively validate predictive models of response to treatment in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21(3):561–8.

    Article  CAS  PubMed  Google Scholar 

  17. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6:S55–7.

    PubMed  Google Scholar 

  18. Yang JC, Sherry RM, Steinberg SM, Topalian SL, Schwartzentruber DJ, Hwu P, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol. 2003;21(16):3127.

    Article  CAS  PubMed  Google Scholar 

  19. Clark JI, Wong MK, Kaufman HL, Daniels GA, Morse MA, McDermott DF, et al. Impact of sequencing targeted therapies with high-dose interleukin-2 immunotherapy: an analysis of outcome and survival of patients with metastatic renal cell carcinoma from an on-going observational IL-2 clinical trial: PROCLAIMSM. Clin Genitourin Cancer. 2017;15(1):31–41.e4.

    Article  PubMed  Google Scholar 

  20. Stenehjem DD, Toole M, Merriman J, Parikh K, Daignault S, Scarlett S, et al. Extension of overall survival beyond objective responses in patients with metastatic renal cell carcinoma treated with high-dose interleukin-2. Cancer Immunol Immunother. 2016;65(8):941–9.

    Article  CAS  PubMed  Google Scholar 

  21. Collaborators Medical Research Council Renal Cancer. Interferon-α and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Lancet. 1999;353(9146):14–7.

    Article  Google Scholar 

  22. Motzer RJ. Perspective: what next for treatment? Nature. 2016;537(7620):S111.

    Article  CAS  PubMed  Google Scholar 

  23. Albiges L, Oudard S, Negrier S, Caty A, Gravis G, Joly F, et al. Complete remission with tyrosine kinase inhibitors in renal cell carcinoma. J Clin Oncol. 2012;30(5):482–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yip SM, Wells C, Moreira R, Wong A, Srinivas S, Beuselinck B, et al. Checkpoint inhibitors in patients with metastatic renal cell carcinoma: results from the international metastatic renal cell carcinoma database consortium. Cancer. 2018;124(18):3677–83.

    Article  CAS  PubMed  Google Scholar 

  25. Harshman LC, Drake CG, Choueiri TK. PD-1 blockade in renal cell carcinoma: to equilibrium and beyond. Cancer Immunol Res. 2014;2(12):1132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol. 2008;84(4):988–93.

    Article  CAS  PubMed  Google Scholar 

  27. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  28. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science (New York, NY). 2011;331(6024):1565–70.

    Article  CAS  Google Scholar 

  29. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  30. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

    Article  CAS  PubMed  Google Scholar 

  31. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.

    Article  CAS  PubMed  Google Scholar 

  32. Gabrilovich DI, Ciernik IF, Carbone DP. Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol. 1996;170(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  33. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–27.

    Article  CAS  PubMed  Google Scholar 

  35. Brahmer JR, Hammers H, Lipson EJ. Nivolumab: targeting PD-1 to bolster antitumor immunity. Future Oncol. 2015;11(9):1307–26.

    Article  CAS  PubMed  Google Scholar 

  36. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol. 2015;33(13):1430–7.

    Article  CAS  PubMed  Google Scholar 

  39. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet (London, England). 2008;372(9637):449–56.

    Article  CAS  Google Scholar 

  41. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  42. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet (London, England). 2011;378(9807):1931–9.

    Article  CAS  Google Scholar 

  43. Cella D, Grunwald V, Nathan P, Doan J, Dastani H, Taylor F, et al. Quality of life in patients with advanced renal cell carcinoma given nivolumab versus everolimus in CheckMate 025: a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tannir NM, Frontera OA, Hammers HJ, Carducci MA, McDermott DF, Salman P, et al. Thirty-month follow-up of the phase III CheckMate 214 trial of first-line nivolumab + ipilimumab (N+ I) or sunitinib (S) in patients (pts) with advanced renal cell carcinoma (aRCC). American Society of Clinical Oncology; Chicago, IL, USA. 2019.

    Google Scholar 

  45. Cella D, Grunwald V, Escudier B, Hammers HJ, George S, Nathan P, et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol. 2019;20(2):297–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McDermott DF, Lee J-L, Szczylik C, Donskov F, Malik J, Alekseev BY, et al. Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): results from cohort A of KEYNOTE-427. American Society of Clinical Oncology; Chicago, IL, USA. 2018.

    Google Scholar 

  47. Hutson TE, Lesovoy V, Al-Shukri S, Stus VP, Lipatov ON, Bair AH, et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol. 2013;14(13):1287–94.

    Article  CAS  PubMed  Google Scholar 

  48. Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19(3):405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27.

    Article  CAS  PubMed  Google Scholar 

  50. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McDermott D, Atkins M, Motzer R, Rini B, Escudier B, Fong L, et al., editors. A phase II study of atezolizumab with or without bevacizumab vs. sunitinib in untreated metastatic renal cell carcinoma patients. 2017 Genitourinary cancer symposium (ASCO GU); 2017.

    Google Scholar 

  52. Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, et al. IMmotion151: a randomized phase III study of atezolizumab plus bevacizumab vs sunitinib in untreated metastatic renal cell carcinoma (mRCC). American Society of Clinical Oncology; Chicago, IL, USA. 2018.

    Google Scholar 

  53. Chowdhury S, McDermott DF, Voss MH, Hawkins RE, Aimone P, Voi M, et al. A phase I/II study to assess the safety and efficacy of pazopanib (PAZ) and pembrolizumab (PEM) in patients (pts) with advanced renal cell carcinoma (aRCC). American Society of Clinical Oncology; Chicago, IL, USA. 2017.

    Google Scholar 

  54. Amin A, Plimack ER, Ernstoff MS, Lewis LD, Bauer TM, McDermott DF, et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer. 2018;6(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ, et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18(8):1254.

    Article  CAS  PubMed  Google Scholar 

  57. Rini BI, Stenzl A, Zdrojowy R, Kogan M, Shkolnik M, Oudard S, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(11):1599–611.

    Article  CAS  PubMed  Google Scholar 

  58. Margolin K, Aronson FR, Sznol M, Atkins MB, Gucalp R, Fisher RI, et al. Phase II studies of recombinant human interleukin-4 in advanced renal cancer and malignant melanoma. J Immunother Emphasis Tumor Immunol. 1994;15(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  59. Weiss GR, Margolin KA, Sznol M, Atkins MB, Oleksowicz L, Isaacs R, et al. A phase II study of the continuous intravenous infusion of interleukin-6 for metastatic renal cell carcinoma. J Immunother Emphasis Tumor Immunol. 1995;18(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  60. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res. 1997;3(3):409–17.

    CAS  PubMed  Google Scholar 

  61. Motzer RJ, Rakhit A, Schwartz LH, Olencki T, Malone TM, Sandstrom K, et al. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res. 1998;4(5):1183–91.

    CAS  PubMed  Google Scholar 

  62. Gollob JA, Veenstra KG, Parker RA, Mier JW, McDermott DF, Clancy D, et al. Phase I trial of concurrent twice-weekly recombinant human interleukin-12 plus low-dose IL-2 in patients with melanoma or renal cell carcinoma. J Clin Oncol. 2003;21(13):2564–73.

    Article  PubMed  CAS  Google Scholar 

  63. Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016;22(3):680–90.

    Article  CAS  PubMed  Google Scholar 

  64. Diab A, Hurwitz ME, Cho DC, Papadimitrakopoulou V, Curti BD, Tykodi SS, et al. NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: preliminary phase 1/2 results of PIVOT. J Clin Oncol. 2018;36(15_suppl):3006.

    Article  Google Scholar 

  65. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Markel G, Cohen-Sinai T, Besser MJ, Oved K, Itzhaki O, Seidman R, et al. Preclinical evaluation of adoptive cell therapy for patients with metastatic renal cell carcinoma. Anticancer Res. 2009;29(1):145–54.

    CAS  PubMed  Google Scholar 

  67. Baldan V, Griffiths R, Hawkins RE, Gilham DE. Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma. Br J Cancer. 2015;112(9):1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Andersen R, Donia M, Westergaard MCW, Pedersen M, Hansen M, Svane IM. Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma. Hum Vaccin Immunother. 2015;11(12):2790–5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lamers CH, Sleijfer S, Van Steenbergen S, Van Elzakker P, Van Krimpen B, Groot C, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tafreshi NK, Lloyd MC, Bui MM, Gillies RJ, Morse DL. Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. In: Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Dordrecht: Springer; 2014. p. 221–54.

    Chapter  Google Scholar 

  73. Pastorekova S, Parkkila S, Parkkila AK, Opavsky R, Zelnik V, Saarnio J, et al. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology. 1997;112(2):398–408.

    Article  CAS  PubMed  Google Scholar 

  74. Weijtens ME, Willemsen RA, Valerio D, Stam K, Bolhuis R. Single chain Ig/gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J Immunol. 1996;157(2):836–43.

    CAS  PubMed  Google Scholar 

  75. Lamers CHJ, Sleijfer S, Vulto AG, Kruit WHJ, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–e2.

    Article  PubMed  Google Scholar 

  76. Wang QJ, Yu Z, Hanada K-I, Patel K, Kleiner D, Restifo NP, et al. Preclinical evaluation of chimeric antigen receptors targeting CD70-expressing cancers. Clin Cancer Res. 2017;23(9):2267–76.

    Article  CAS  PubMed  Google Scholar 

  77. Finke JH, Rayman PA, Ko JS, Bradley JM, Gendler SJ, Cohen PA. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J (Sudbury, Mass). 2013;19(4):353–64.

    Article  CAS  Google Scholar 

  78. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor cd3ζ chain expression byl-arginine. J Biol Chem. 2002;277(24):21123–9.

    Article  CAS  PubMed  Google Scholar 

  79. Cesana GC, DeRaffele G, Cohen S, Moroziewicz D, Mitcham J, Stoutenburg J, et al. Characterization of CD4+ CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol. 2006;24(7):1169–77.

    Article  CAS  PubMed  Google Scholar 

  80. Siddiqui SA, Frigola X, Bonne-Annee S, Mercader M, Kuntz SM, Krambeck AE, et al. Tumor-infiltrating Foxp3− CD4+ CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res. 2007;13(7):2075–81.

    Article  CAS  PubMed  Google Scholar 

  81. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009;15(6):2148–57.

    Article  CAS  PubMed  Google Scholar 

  82. Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res. 2008;14(20):6674–82.

    Article  CAS  PubMed  Google Scholar 

  83. Yeku O, Li X, Brentjens RJ. Adoptive T-cell therapy for solid tumors. Am Soc Clin Oncol Educ Book. 2017;37:193–204.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Messing EM, Manola J, Wilding G, Propert K, Fleischmann J, Crawford ED, et al. Phase III study of interferon alfa-NL as adjuvant treatment for resectable renal cell carcinoma: an Eastern Cooperative Oncology Group/Intergroup trial. J Clin Oncol. 2003;21(7):1214–22.

    Article  CAS  PubMed  Google Scholar 

  85. Clark JI, Atkins MB, Urba WJ, Creech S, Figlin RA, Dutcher JP, et al. Adjuvant high-dose bolus interleukin-2 for patients with high-risk renal cell carcinoma: a cytokine working group randomized trial. J Clin Oncol. 2003;21(16):3133–40.

    Article  CAS  PubMed  Google Scholar 

  86. Jocham D, Richter A, Hoffmann L, Iwig K, Fahlenkamp D, Zakrzewski G, et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet (London, England). 2004;363(9409):594–9.

    Article  CAS  Google Scholar 

  87. Jonasch E, Wood C, Tamboli P, Pagliaro LC, Tu SM, Kim J, et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br J Cancer. 2008;98(8):1336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S, et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet (London, England). 2008;372(9633):145–54.

    Article  CAS  Google Scholar 

  89. López JI, Pulido R, Cortés JM, Angulo JC, Lawrie CH. Potential impact of PD-L1 (SP-142) immunohistochemical heterogeneity in clear cell renal cell carcinoma immunotherapy. Pathol Res Pract. 2018;214(8):1110–4.

    Article  PubMed  CAS  Google Scholar 

  90. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–1.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science (New York, NY). 2015;348(6230):124–8.

    Article  CAS  PubMed Central  Google Scholar 

  92. De Velasco G, Miao D, Voss MH, Hakimi AA, Hsieh JJ, Tannir NM, et al. Tumor mutational load and immune parameters across metastatic renal cell carcinoma risk groups. Cancer Immunol Res. 2016;4(10):820–2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Malouf GG, Ali SM, Wang K, Balasubramanian S, Ross JS, Miller VA, et al. Genomic characterization of renal cell carcinoma with sarcomatoid dedifferentiation pinpoints recurrent genomic alterations. Eur Urol. 2016;70(2):348–57.

    Article  CAS  PubMed  Google Scholar 

  94. de Velasco G, Miao D, Shukla S, Voss MH, Wu C, Murray B, et al. Integrated genomic correlates of response to PD-1 inhibitor nivolumab in metastatic renal cell carcinoma (mRCC). American Society of Clinical Oncology; Chicago, IL, USA. 2016.

    Google Scholar 

  95. Rini B, Huseni M, Atkins M, McDermott M, Powles T, Escudier B, et al., editors. Molecular correlates differentiate response to atezolizumab (atezo)+ bevacizumab (bev) vs sunitinib (sun): results from a phase III study (IMmotion151) in untreated metastatic renal cell carcinoma (mRCC). Abstract LBA31 Presented at: ESMO annual meeting, Genitourinary cancers/Cancer immunology and immunotherapy/Anticancer agents & biologic therapy Munich, Germany; 2018.

    Google Scholar 

  96. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  97. Athanazio DA, Trpkov K. What is new in genitourinary pathology? Recent developments and highlights of the new 2016 World Health Organization classification of tumors of the urinary system and male genital organs. Appl Cancer Res. 2016;36(1):1.

    Article  Google Scholar 

  98. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  99. NIH NCI: Surveillance E, and End Results Program. Cancer stat facts: bladder cancer. 2018. Available from: https://seer.cancer.gov/statfacts/html/urinb.html.

  100. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström P-U, Choi W, et al. Bladder cancer. Lancet. 2016;388(10061):2796–810.

    Article  PubMed  Google Scholar 

  101. Pasin E, Josephson DY, Mitra AP, Cote RJ, Stein JP. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol. 2008;10(1):31–43.

    PubMed  PubMed Central  Google Scholar 

  102. NCI. Surveillance, epidemiology, and end results program. Cancer stat facts: bladder cancer. 2018. Available from: https://seer.cancer.gov/statfacts/html/urinb.html.

  103. von der Maase H, Hansen SW, Roberts JT, Roberts JT, Dogliotti L, Dogliotti L, Oliver T, Moore MJ, Bodrogi I, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol. 2000;18:3068–77. (0732-183X (Print)).

    Article  PubMed  Google Scholar 

  104. Galsky MD, Mironov S, Iasonos A, Scattergood J, Boyle MG, Bajorin DF. Phase II trial of pemetrexed as second-line therapy in patients with metastatic urothelial carcinoma. Investig New Drugs. 2007;25(3):265–70.

    Article  CAS  Google Scholar 

  105. Vaughn DJ, Broome CM, Hussain M, Gutheil JC, Markowitz AB. Phase II trial of weekly paclitaxel in patients with previously treated advanced urothelial cancer. J Clin Oncol. 2002;20(4):937–40.

    Article  CAS  PubMed  Google Scholar 

  106. Patel MR, Ellerton J, Infante JR, Agrawal M, Gordon M, Aljumaily R, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN solid tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018;19(1):51–64.

    Article  CAS  PubMed  Google Scholar 

  107. Powles T, O’Donnell PH, Massard C, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3(9):e172411.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sharma P, Callahan MK, Bono P, Kim J, Spiliopoulou P, Calvo E, et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016;17(11):1590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558.

    Article  CAS  PubMed  Google Scholar 

  111. Apolo AB, Infante JR, Balmanoukian A, Patel MR, Wang D, Kelly K, et al. Avelumab, an anti–programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol. 2017;35(19):2117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Balar AV, Castellano D, O’Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92.

    Article  CAS  PubMed  Google Scholar 

  113. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Iyer G, Al-Ahmadie H, Schultz N, Hanrahan AJ, Ostrovnaya I, Balar AV, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013;31(25):3133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nagayama A, Ellisen LW, Chabner B, Bardia A. Antibody-drug conjugates for the treatment of solid tumors: clinical experience and latest developments. Target Oncol. 2017;12(6):719–39.

    Article  PubMed  Google Scholar 

  116. Alhalabi O, Rafei H, Shah A, Siefker-Radtke A, Campbell M, Gao J. Targeting advanced urothelial carcinoma-developing strategies. Curr Opin Oncol. 2019;31:207–15.

    Article  PubMed  Google Scholar 

  117. Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.

    Article  CAS  PubMed  Google Scholar 

  118. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315.

    Article  CAS  Google Scholar 

  120. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69.

    Article  CAS  PubMed  Google Scholar 

  123. Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother. 2007;56(8):1173–82.

    Article  CAS  PubMed  Google Scholar 

  124. Boorjian SA, Sheinin Y, Crispen PL, Farmer SA, Lohse CM, Kuntz SM, et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res. 2008;14(15):4800.

    Article  CAS  PubMed  Google Scholar 

  125. Xylinas E, Robinson BD, Kluth LA, Volkmer BG, Hautmann R, Kufer R, et al. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur J Surg Oncol. 2014;40(1):121–7.

    Article  CAS  PubMed  Google Scholar 

  126. Herr HW, Sogani PC. Does early cystectomy improve the survival of patients with high risk superficial bladder tumors? J Urol. 2001;166(4):1296–9.

    Article  CAS  PubMed  Google Scholar 

  127. Lamm DL, Thor DE, Harris SC, Reyna JA, Stogdill VD, Radwin HM. Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J Urol. 1980;124(1):38–40.

    Article  CAS  PubMed  Google Scholar 

  128. Pettenati C, Ingersoll MA. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol. 2018;15(10):615–25.

    Article  CAS  PubMed  Google Scholar 

  129. Bohle A, Jocham D, Bock PR. Intravesical bacillus Calmette-Guerin versus mitomycin C for superficial bladder cancer: a formal meta-analysis of comparative studies on recurrence and toxicity. J Urol. 2003;169(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  130. Shelley MD, Kynaston H, Court J, Wilt TJ, Coles B, Burgon K, et al. A systematic review of intravesical bacillus Calmette-Guerin plus transurethral resection vs transurethral resection alone in Ta and T1 bladder cancer. BJU Int. 2001;88(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  131. Shelley MD, Wilt TJ, Court J, Coles B, Kynaston H, Mason MD. Intravesical bacillus Calmette-Guerin is superior to mitomycin C in reducing tumour recurrence in high-risk superficial bladder cancer: a meta-analysis of randomized trials. BJU Int. 2004;93(4):485–90.

    Article  CAS  PubMed  Google Scholar 

  132. Lamm DL, Blumenstein BA, Crissman JD, Montie JE, Gottesman JE, Lowe BA, et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study. J Urol. 2000;163(4):1124–9.

    Article  CAS  PubMed  Google Scholar 

  133. Singh P, Catherine T, Lerner SP, McConkey D, Plets M, Lucia MS, et al. S1605: phase II trial of atezolizumab in BCG-unresponsive non-muscle invasive bladder cancer. J Clin Oncol. 2017;35(15_suppl):TPS4591-TPS.

    Article  Google Scholar 

  134. Solsona E, Iborra I, Collado A, Rubio-Briones J, Casanova J, Calatrava A. Feasibility of radical transurethral resection as monotherapy for selected patients with muscle invasive bladder cancer. J Urol. 2010;184(2):475–80.

    Article  PubMed  Google Scholar 

  135. Leibovici D, Kassouf W, Pisters LL, Pettaway CA, Wu X, Dinney CP, et al. Organ preservation for muscle-invasive bladder cancer by transurethral resection. Urology. 2007;70(3):473–6.

    Article  PubMed  Google Scholar 

  136. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur Urol. 2005;48(2):202–5; discussion 5–6.

    Article  Google Scholar 

  137. Balducci L, Extermann M. Management of cancer in the older person: a practical approach. Oncologist. 2000;5(3):224–37.

    Article  CAS  PubMed  Google Scholar 

  138. Boyd CM, Darer J, Boult C, Fried LP, Boult L, Wu AW. Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases: implications for pay for performance. JAMA. 2005;294(6):716–24.

    Article  CAS  PubMed  Google Scholar 

  139. Carthon BC, Wolchok JD, Yuan J, Kamat A, Ng Tang DS, Sun J, et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin Cancer Res. 2010;16(10):2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Necchi A, Anichini A, Raggi D, Briganti A, Massa S, Lucianò R, et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J Clin Oncol. 2018;36(34):3353–60.

    Article  CAS  PubMed  Google Scholar 

  141. Powles T, Durán I, van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.

    Article  CAS  PubMed  Google Scholar 

  142. Gao J, Siefker-Radtke AO, Navai N, Campbell MT, Slack R, Guo C, et al. A pilot pre-surgical study evaluating anti-PD-L1 durvalumab (durva) plus anti-CTLA-4 tremelimumab (treme) in patients with muscle-Invasive, high-risk urothelial bladder carcinoma who are ineligible for cisplatin-based neoadjuvant chemotherapy. J Clin Oncol. 2018;36(15_suppl):e16524.

    Article  Google Scholar 

  143. Weickhardt AJ, Foroudi F, Sengupta S, Galletta L, Herschtal A, Grimison PS, et al. Pembrolizumab and chemoradiotherapy for muscle invasive bladder cancer: the ANZUP 1502 PCR-MIB trial. J Clin Oncol. 2018;36(6_suppl):TPS531-TPS.

    Article  Google Scholar 

  144. NIH. U.S. National Library of Medicine. ClinicalTrials.gov. 2018. Available from: U.S. National Library of Medicine. ClinicalTrials.gov.

  145. Powles T, Gschwend JE, Loriot Y, Bellmunt J, Geczi L, Vulsteke C, et al. Phase 3 KEYNOTE-361 trial: pembrolizumab (pembro) with or without chemotherapy versus chemotherapy alone in advanced urothelial cancer. J Clin Oncol. 2017;35(15_suppl):TPS4590-TPS.

    Article  Google Scholar 

  146. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.

    Article  CAS  PubMed  Google Scholar 

  147. Galsky MD, Grande E, Davis ID, De Santis M, Arranz Arija JA, Kikuchi E, et al. IMvigor130: a randomized, phase III study evaluating first-line (1L) atezolizumab (atezo) as monotherapy and in combination with platinum-based chemotherapy (chemo) in patients (pts) with locally advanced or metastatic urothelial carcinoma (mUC). J Clin Oncol. 2018;36(15_suppl):TPS4589-TPS.

    Article  Google Scholar 

  148. Plimack ER, Bellmunt J, Gupta S, Berger R, Chow LQM, Juco J, et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol. 2017;18(2):212–20.

    Article  CAS  PubMed  Google Scholar 

  149. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.

    Article  CAS  PubMed  Google Scholar 

  150. Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti–PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res. 2015;3(10):1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chakrabarti D, Petrylak D, Kessler ER, Aragon-Ching JB, Shnaidman M, Grivas P, et al. A multicentre, international, randomised, open-label phase 3 trial of avelumab + best supportive care (BSC) vs BSC alone as maintenance therapy after first-line platinum-based chemotherapy in patients with advanced urothelial cancer (JAVELIN bladder 100). Ann Oncol. 2016;27(suppl_6).

    Google Scholar 

  152. Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and efficacy of durvalumab (MEDI4736), an anti–programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34(26):3119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Apolo AB. PDL1: the illusion of an ideal biomarker. Eur Urol Focus. 2016;1(3):269–71.

    Article  PubMed  Google Scholar 

  154. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397–404.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.

    Article  CAS  PubMed  Google Scholar 

  157. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19(6):1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pichler R, Heidegger I, Fritz J, Danzl M, Sprung S, Zelger B, et al. PD-L1 expression in bladder cancer and metastasis and its influence on oncologic outcome after cystectomy. Oncotarget. 2017;8(40):66849–64.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Galsky MD, Powles T, Li S, Hennicken D, Sonpavde G. A phase 3, open-label, randomized study of nivolumab plus ipilimumab or standard of care (SOC) versus SOC alone in patients (pts) with previously untreated unresectable or metastatic urothelial carcinoma (mUC; CheckMate 901). J Clin Oncol. 2018;36(6_suppl):TPS539-TPS.

    Article  Google Scholar 

  161. Alva AS, McDaniel A, Zhan T, Xiao H, Chinnaiyan AM, Lee CT, et al. Expression of PDL1 (B7-H1) before and after neoadjuvant chemotherapy (NAC) in urothelial carcinoma. J Clin Oncol. 2015;33(7_suppl):313.

    Article  Google Scholar 

  162. Lan Y, Zhang D, Xu C, Marelli B, Qi J, Qi H, et al., editors. Preclinical evaluation and mechanistic characterization of M7824 (MSB0011359C), a novel bifunctional fusion protein targeting the PD-L1 and TGFβ pathways. AACR 2017 Annual meeting; Apr 1–5 2017; Washington, DC.

    Google Scholar 

  163. Gulley JL, Heery CR, Schlom J, Madan RA, Cao L, Lamping E, et al. Preliminary results from a phase 1 trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in advanced solid tumors. J Clin Oncol. 2017;35(15_suppl):3006.

    Article  Google Scholar 

  164. Siefker-Radtke AO, Fishman MN, Balar AV, Grignani G, Diab A, Gao J, et al. NKTR-214 + nivolumab in first-line advanced/metastatic urothelial carcinoma (mUC): updated results from PIVOT-02. J Clin Oncol. 2019;37(7_suppl):388.

    Article  Google Scholar 

  165. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  166. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  167. Fedewa SA, Ward EM, Brawley O, Jemal A. Recent patterns of prostate-specific antigen testing for prostate cancer screening in the United States recent PSA testing patterns in US screening for prostate cancer letters. JAMA Intern Med. 2017;177(7):1040–2.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hu JC, Nguyen P, Mao J, Halpern J, Shoag J, Wright JD, et al. Increase in prostate cancer distant metastases at diagnosis in the United States. JAMA Oncol. 2017;3(5):705–7.

    Article  PubMed  Google Scholar 

  169. Loblaw DA, Virgo KS, Nam R, Somerfield MR, Ben-Josef E, Mendelson DS, et al. Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2007 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol. 2007;25(12):1596–605.

    Article  CAS  PubMed  Google Scholar 

  170. James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377(4):338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377(4):352–60.

    Article  CAS  PubMed  Google Scholar 

  172. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet (London, England). 2016;387(10024):1163–77.

    Article  CAS  Google Scholar 

  173. Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373(8):737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Abida W, Armenia J, Gopalan A, et al. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precis Oncol. 2017;2017 https://doi.org/10.1200/PO.17.00029

  175. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48.

    Article  CAS  PubMed  Google Scholar 

  176. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97.

    Article  CAS  PubMed  Google Scholar 

  177. Fizazi K, Scher HI, Miller K, Basch E, Sternberg CN, Cella D, et al. Effect of enzalutamide on time to first skeletal-related event, pain, and quality of life in men with castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial. Lancet Oncol. 2014;15(10):1147–56.

    Article  CAS  PubMed  Google Scholar 

  178. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  179. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  180. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet (London, England). 2010;376(9747):1147–54.

    Article  CAS  Google Scholar 

  181. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol. 2008;26(2):242–5.

    Article  CAS  PubMed  Google Scholar 

  182. McNeel DG, Bander NH, Beer TM, Drake CG, Fong L, Harrelson S, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma. J Immunother Cancer. 2016;4(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet (London, England). 2016;387(10013):70–82.

    Article  Google Scholar 

  184. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82(11):2256–61.

    Article  CAS  PubMed  Google Scholar 

  185. Riegman PHJ, Vlietstra RJ, van der Korput JAGM, Romijn JC, Trapman J. Characterization of the prostate-specific antigen gene: a novel human kallikrein-like gene. Biochem Biophys Res Commun. 1989;159(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  186. Solin T, Kontturi M, Pohlmann R, Vihko P. Gene expression and prostate specificity of human prostatic acid phosphatase (PAP): evaluation by RNA blot analyses. Biochim Biophys Acta Gene Struct Expr. 1990;1048(1):72–7.

    Article  CAS  Google Scholar 

  187. Coffey DS, Isaacs JT. Prostate tumor biology and cell kinetics--theory. Urology. 1981;17(Suppl 3):40–53.

    CAS  PubMed  Google Scholar 

  188. Olson BM, McNeel DG. CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells. Cancer Immunol Immunother. 2011;60(6):781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hadaschik B, Su Y, Huter E, Ge Y, Hohenfellner M, Beckhove P. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer. J Urol. 2012;187(4):1458–65.

    Article  CAS  PubMed  Google Scholar 

  190. Chakraborty NG, Stevens RL, Mehrotra S, Laska E, Taxel P, Sporn JR, et al. Recognition of PSA-derived peptide antigens by T cells from prostate cancer patients without any prior stimulation. Cancer Immunol Immunother. 2003;52(8):497–505.

    Article  CAS  PubMed  Google Scholar 

  191. Peshwa MV, Shi JD, Ruegg C, Laus R, van Schooten WC. Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate. 1998;36(2):129–38.

    Article  CAS  PubMed  Google Scholar 

  192. Machlenkin A, Paz A, Bar Haim E, Goldberger O, Finkel E, Tirosh B, et al. Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy. Cancer Res. 2005;65(14):6435–42.

    Article  CAS  PubMed  Google Scholar 

  193. Johnson LE, Frye TP, Chinnasamy N, Chinnasamy D, McNeel DG. Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer Immunol Immunother. 2007;56(6):885–95.

    Article  CAS  PubMed  Google Scholar 

  194. Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB, Drake CG. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate. 2009;69(15):1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Mercader M, Bodner BK, Moser MT, Kwon PS, Park ES, Manecke RG, et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci U S A. 2001;98(25):14565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gannon PO, Poisson AO, Delvoye N, Lapointe R, Mes-Masson A-M, Saad F. Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J Immunol Methods. 2009;348(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  197. Barach YS, Lee JS, Zang X. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol Med. 2011;17(1):47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Degl’Innocenti E, Grioni M, Boni A, Camporeale A, Bertilaccio MTS, Freschi M, et al. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur J Immunol. 2005;35(1):66–75.

    Article  PubMed  CAS  Google Scholar 

  199. Madan RA, Gulley JL, Kantoff PW. Demystifying immunotherapy in prostate cancer: understanding current and future treatment strategies. Cancer J (Sudbury, Mass). 2013;19(1):50–8.

    Article  CAS  Google Scholar 

  200. Quinn DI, Shore ND, Egawa S, Gerritsen WR, Fizazi K. Immunotherapy for castration-resistant prostate cancer: progress and new paradigms. Urol Oncol Semin Orig Invest. 2015;33(5):245–60.

    CAS  Google Scholar 

  201. Goldman B, DeFrancesco L. The cancer vaccine roller coaster. Nat Biotechnol. 2009;27:129.

    Article  CAS  PubMed  Google Scholar 

  202. Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–9.

    Article  CAS  PubMed  Google Scholar 

  203. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–94.

    Article  CAS  PubMed  Google Scholar 

  204. Parker C, Haynes L, Huber ML, Iversen P. Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst. 2012;104(4):273–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  205. Higano CS, Small EJ, Whitmore JB, Frohlich MW, Schellhammer PF, Kantoff PW. Re: interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst. 2012;104(14):1107–9.

    Article  PubMed  Google Scholar 

  206. Wargowski E, Johnson LE, Eickhoff JC, Delmastro L, Staab MJ, Liu G, et al. Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using Sipuleucel-T and a DNA vaccine. J Immunother Cancer. 2018;6(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Petrylak DP, Drake CG, Pieczonka CM, Corman JM, Garcia JA, Dunshee C, et al. Overall survival and immune responses with sipuleucel-T and enzalutamide: STRIDE study. J Clin Oncol. 2018;36(6_suppl):246.

    Article  Google Scholar 

  208. Small EJ, Lance RS, Redfern CH, Millard FE, Gardner TA, Dawson NA, et al. Long-term follow-up from STAMP, a phase II trial, evaluating sipuleucel-T and concurrent (CON) vs sequential (SEQ) abiraterone acetate + prednisone in metastatic castration-resistant prostate cancer patients (pts). J Clin Oncol. 2017;35(6_suppl):190.

    Article  Google Scholar 

  209. Strauss J, Madan RA, Figg WD. Evaluating immune responses after sipuleucel-T therapy. Cancer Biol Ther. 2015;16(8):1119–21.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Higano CS, Corman JM, Smith DC, Centeno AS, Steidle CP, Gittleman M, et al. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer. 2008;113(5):975–84.

    Article  CAS  PubMed  Google Scholar 

  211. Simons JW, Carducci MA, Mikhak B, Lim M, Biedrzycki B, Borellini F, et al. Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naïve prostate cancer. Clin Cancer Res. 2006;12(11):3394.

    Article  CAS  PubMed  Google Scholar 

  212. Sanda MG, Smith DC, Charles LG, Hwang C, Pienta KJ, Schlom J, et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology. 1999;53(2):260–6.

    Article  CAS  PubMed  Google Scholar 

  213. Eder JP, Kantoff PW, Roper K, Xu GX, Bubley GJ, Boyden J, et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res. 2000;6(5):1632–8.

    CAS  PubMed  Google Scholar 

  214. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Results of PROSPECT: a randomized phase 3 trial of PROSTVAC-V/F (PRO) in men with asymptomatic or minimally symptomatic metastatic, castration-resistant prostate cancer. J Clin Oncol. 2018;36(15_suppl):5006.

    Article  Google Scholar 

  216. Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37:1051–61. https://doi.org/10.1200/JCO.18.02031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56.

    Article  CAS  PubMed  Google Scholar 

  219. Gulley JL, Madan RA. Finding an immunologic beachhead in the prostate cancer microenvironment. J Natl Cancer Inst. 2018;111(3):219–20.

    PubMed Central  Google Scholar 

  220. Fizazi K, Drake CG, Shaffer DR, Pachynski R, Saad F, Ciprotti M, et al. An open-label, phase 2 study of nivolumab in combination with either rucaparib, docetaxel, or enzalutamide in men with castration-resistant metastatic prostate cancer (mCRPC; CheckMate 9KD). J Clin Oncol. 2018;36(15_suppl):TPS3126-TPS.

    Article  Google Scholar 

  221. Scher HI, Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJM, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2016;35(1):40–7.

    Article  PubMed  Google Scholar 

  224. Small E, Higano C, Tchekmedyian N, Sartor O, Stein B, Young R, et al. Randomized phase II study comparing 4 monthly doses of ipilimumab (MDX-010) as a single agent or in combination with a single dose of docetaxel in patients with hormone-refractory prostate cancer. J Clin Oncol. 2006;24(18_suppl):4609.

    Article  Google Scholar 

  225. Autio KA, Eastham JA, Danila DC, Slovin SF, Morris MJ, Abida W, et al. A phase II study combining ipilimumab and degarelix with or without radical prostatectomy (RP) in men with newly diagnosed metastatic noncastration prostate cancer (mNCPC) or biochemically recurrent (BR) NCPC. J Clin Oncol. 2017;35(6_suppl):203.

    Article  Google Scholar 

  226. Hansen AR, Massard C, Ott PA, Haas NB, Lopez JS, Ejadi S, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol. 2018;29(8):1807–13.

    Article  CAS  PubMed  Google Scholar 

  227. Bono JSD, Goh JC, Ojamaa K, Rodriguez JMP, Drake CG, Hoimes CJ, et al. KEYNOTE-199: pembrolizumab (pembro) for docetaxel-refractory metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2018;36(15_suppl):5007.

    Article  Google Scholar 

  228. Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7(33):52810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Rathkopf DE, et al. Microsatellite instability in prostate cancer and response to immune checkpoint blockade. J Clin Oncol. 2018;36(15_suppl):5020.

    Article  Google Scholar 

  233. Sharma P, Pachynski RK, Narayan V, Flechon A, Gravis G, Galsky MD, et al. Initial results from a phase II study of nivolumab (NIVO) plus ipilimumab (IPI) for the treatment of metastatic castration-resistant prostate cancer (mCRPC; CheckMate 650). J Clin Oncol. 2019;37(7_suppl):142.

    Article  Google Scholar 

  234. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26(7):1148–59.

    Article  PubMed  Google Scholar 

  235. Fong PCC, Retz M, Drakaki A, Massard C, Berry WR, Romano E, et al. Keynote-365 cohort C: pembrolizumab (pembro) plus enzalutamide (enza) in abiraterone (abi)-pretreated patients (pts) with metastatic castrate resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37(7_suppl):171.

    Article  Google Scholar 

  236. Powles T, Fizazi K, Gillessen S, Drake CG, Rathkopf DE, Narayanan S, et al. A phase III trial comparing atezolizumab with enzalutamide vs enzalutamide alone in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2017;35(15_suppl):TPS5090-TPS.

    Article  Google Scholar 

  237. Teo MY, Seier K, Ostrovnaya I, Regazzi AM, Kania BE, Moran MM, et al. Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J Clin Oncol. 2018;36(17):1685–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15(12):760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Karzai F, Madan RA, Owens H, Couvillon A, Hankin A, Williams M, et al. A phase 2 study of olaparib and durvalumab in metastatic castrate-resistant prostate cancer (mCRPC) in an unselected population. J Clin Oncol. 2018;36(6_suppl):163.

    Article  Google Scholar 

  240. Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6(1):141.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91(3):528–39.

    Article  CAS  PubMed  Google Scholar 

  242. Kim YJ, Kim Y-I. Therapeutic responses and survival effects of 177Lu-PSMA-617 radioligand therapy in metastatic castrate-resistant prostate cancer: a meta-analysis. Clin Nucl Med. 2018;43(10):728–34.

    Article  PubMed  Google Scholar 

  243. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zuccolotto G, Fracasso G, Merlo A, Montagner IM, Rondina M, Bobisse S, et al. PSMA-specific CAR-engineered T cells eradicate disseminated prostate cancer in preclinical models. PLoS One. 2014;9(10):e109427.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  245. Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, et al. Chimeric antigen receptor (CAR+) modified T cells targeting prostate specific membrane antigen (PSMA) in patients (pts) with castrate metastatic prostate cancer (CMPC). J Clin Oncol. 2013;31(15_suppl):TPS3115-TPS.

    Article  Google Scholar 

  246. Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26(7):1855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Narayan V, Gladney W, Plesa G, Vapiwala N, Carpenter E, Maude SL, et al. A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37(7_suppl):TPS347-TPS.

    Article  Google Scholar 

  248. Yu EY, Massard C, Retz M, Tafreshi A, Carles Galceran J, Hammerer P, et al. Keynote-365 cohort a: pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37(7_suppl):145.

    Article  Google Scholar 

  249. Scholz M, Yep S, Chancey M, Kelly C, Chau K, Turner J, et al. Phase I clinical trial of sipuleucel-T combined with escalating doses of ipilimumab in progressive metastatic castrate-resistant prostate cancer. Immunotargets Ther. 2017;6:11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmet Asim Bilen or Amishi Yogesh Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alhalabi, O., Rafei, H., Bilen, M.A., Shah, A.Y. (2020). Current Landscape of Immunotherapy in Genitourinary Malignancies. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1244. Springer, Cham. https://doi.org/10.1007/978-3-030-41008-7_6

Download citation

Publish with us

Policies and ethics