Skip to main content

Immune-Related Oral, Otologic, and Ocular Adverse Events

  • Chapter
  • First Online:
Book cover Immunotherapy

Abstract

Emerging immunotherapy agents, such as immune checkpoint inhibitors, have shown remarkable promise in the treatment of various malignancies. These drugs selectively target different steps in the immune response cascade to upregulate the body’s normal response to cancer. Due to the novelty of these therapeutic agents, their toxicity profile is less well understood.

Meta-analysis results reveal that the overall prevalence of oral mucositis, stomatitis, and xerostomia is lower with checkpoint inhibitors compared to conventional chemotherapy, and head and neck radiation therapy. However, the widespread use of immunotherapy reveals new oral mucosal barrier adverse events, including bullous pemphigoid, mucous membrane pemphigoid, and lichenoid mucositis. Audiovestibular dysfunction can occur from autoimmune-mediated pathways of immunotherapy (adoptive cell) with limited treatment options. Such auditory complications can lead to speech recognition deficits and sensorineural hearing loss. Ocular toxicities are among the most common adverse events resulting from the use of these agents. The majority of ocular immune-related adverse events (irAEs) are mild, low-grade, non-sight threatening, such as blurred vision, conjunctivitis, and ocular surface disease. Serious and sight-threatening events, including corneal perforation, optic neuropathy, and retinal vascular occlusion, can occur but are infrequent. In this chapter, we review the current evidence on the clinical manifestations of oral, audiovestibular, and ocular immune-related adverse events (i.e., irAEs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centerwatch Database of FDA Approved Drugs.[Available from: http://www.centerwatch.com.

  2. Fraunfelder FT. Clinical ocualr toxicology. Saunders Elvevier; 2008.

    Google Scholar 

  3. Lalla RV, Peterson DE. Oral mucositis. Dent Clin N Am. 2005;49(1):167–84.. ix

    Article  PubMed  Google Scholar 

  4. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, et al. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100(9 Suppl):1995–2025.

    Article  PubMed  Google Scholar 

  5. Treister N, Sonis S. Mucositis: biology and management. Curr Opin Otolaryngol Head Neck Surg. 2007;15(2):123–9.

    Article  PubMed  Google Scholar 

  6. Lalla RV, Sonis ST, Peterson DE. Management of oral mucositis in patients who have cancer. Dent Clin N Am. 2008;52(1):61–77.. viii

    Article  PubMed  Google Scholar 

  7. Sonis ST. The pathobiology of mucositis. Nat Rev Cancer. 2004;4(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  8. Berger K, Schopohl D, Bollig A, Strobach D, Rieger C, Rublee D, et al. Burden of oral mucositis: a systematic review and implications for future research. Oncol Res Treat. 2018;41(6):399–405.

    Article  PubMed  Google Scholar 

  9. Pinna R, Campus G, Cumbo E, Mura I, Milia E. Xerostomia induced by radiotherapy: an overview of the physiopathology, clinical evidence, and management of the oral damage. Ther Clin Risk Manag. 2015;11:171–88.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jensen SB, Pedersen AM, Vissink A, Andersen E, Brown CG, Davies AN, et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Support Care Cancer. 2010;18(8):1039–60.

    Article  CAS  PubMed  Google Scholar 

  11. Jensen SB, Pedersen AM, Reibel J, Nauntofte B. Xerostomia and hypofunction of the salivary glands in cancer therapy. Support Care Cancer. 2003;11(4):207–25.

    Article  PubMed  Google Scholar 

  12. Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–55.

    Article  CAS  PubMed  Google Scholar 

  14. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Owosho AA, Scordo M, Yom SK, Randazzo J, Chapman PB, Huryn JM, et al. Osteonecrosis of the jaw a new complication related to Ipilimumab. Oral Oncol. 2015;51(12):e100–1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Naidoo J, Schindler K, Querfeld C, Busam K, Cunningham J, Page DB, et al. Autoimmune bullous skin disorders with immune checkpoint inhibitors targeting PD-1 and PD-L1. Cancer Immunol Res. 2016;4(5):383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jour G, Glitza IC, Ellis RM, Torres-Cabala CA, Tetzlaff MT, Li JY, et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: a report on bullous skin eruptions. J Cutan Pathol. 2016;43(8):688–96.

    Article  PubMed  Google Scholar 

  18. Zumelzu C, Alexandre M, Le Roux C, Weber P, Guyot A, Levy A, et al. Mucous membrane pemphigoid, bullous pemphigoid, and anti-programmed death-1/programmed death-ligand 1: a case report of an elderly woman with mucous membrane pemphigoid developing after pembrolizumab therapy for metastatic melanoma and review of the literature. Front Med (Lausanne). 2018;5:268.

    Article  Google Scholar 

  19. Schaberg KB, Novoa RA, Wakelee HA, Kim J, Cheung C, Srinivas S, et al. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J Cutan Pathol. 2016;43(4):339–46.

    Article  PubMed  Google Scholar 

  20. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seaman BJ, Guardiani EA, Brewer CC, Zalewski CK, King KA, Rudy S, et al. Audiovestibular dysfunction associated with adoptive cell immunotherapy for melanoma. Otolaryngol Head Neck Surg. 2012;147(4):744–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Steel KP, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 1989;107(3):453–63.

    CAS  PubMed  Google Scholar 

  23. Kim HJ, Gratton MA, Lee JH, Perez Flores MC, Wang W, Doyle KJ, et al. Precise toxigenic ablation of intermediate cells abolishes the “battery” of the cochlear duct. J Neurosci. 2013;33(36):14601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wingard JC, Zhao HB. Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss – a common hereditary deafness. Front Cell Neurosci. 2015;9:202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Izumi K, Kohta T, Kimura Y, Ishida S, Takahashi T, Ishiko A, et al. Tietz syndrome: unique phenotype specific to mutations of MITF nuclear localization signal. Clin Genet. 2008;74(1):93–5.

    Article  CAS  PubMed  Google Scholar 

  26. Asher JH Jr, Sommer A, Morell R, Friedman TB. Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat. 1996;7(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  27. Drozniewska M, Haus O. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss. Mol Cytogenet. 2014;7:30.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31(4):391–406.

    Article  CAS  PubMed  Google Scholar 

  29. Chaoui A, Watanabe Y, Touraine R, Baral V, Goossens M, Pingault V, et al. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome. Hum Mutat. 2011;32(12):1436–49.

    Article  CAS  PubMed  Google Scholar 

  30. Greco A, Fusconi M, Gallo A, Turchetta R, Marinelli C, Macri GF, et al. Vogt-Koyanagi-Harada syndrome. Autoimmun Rev. 2013;12(11):1033–8.

    Article  CAS  PubMed  Google Scholar 

  31. Spielbauer K, Cunningham L, Schmitt N. PD-1 inhibition minimally affects cisplatin-induced toxicities in a murine model. Otolaryngol Head Neck Surg. 2018;159(2):343–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zibelman M, Pollak N, Olszanski AJ. Autoimmune inner ear disease in a melanoma patient treated with pembrolizumab. J Immunother Cancer. 2016;4:8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Diamantopoulos PT, Stoungioti S, Anastasopoulou A, Papaxoinis G, Gogas H. Incomplete Vogt-Koyanagi-Harada disease following treatment with encorafenib and binimetinib for metastatic melanoma. Melanoma Res. 2018;28(6):648–51.

    Article  PubMed  Google Scholar 

  34. Tampio A DS, Sivapiragasam A, Nicholas B. Bilateral sensorineural hearing loss and panuveitis in a man with stage IV malignant melanoma after nivolumab immunotherapy. Poster presentation presented at the: Combined Otolaryngology Spring Meetings 2019; May 3, 2019; Austin, TX. https://www.researchposterscom/display_postersaspx?code=cosm2019.

  35. Basti S. Ocular toxicities of epidermal growth factor receptor inhibitors and their management. Cancer Nurs. 2007;30(4 Suppl 1):S10–6.

    Article  PubMed  Google Scholar 

  36. Dalvin LA, Shields CL, Orloff M, Sato T, Shields JA. Checkpoint inhibitor immune therapy: systemic indications and ophthalmic side effects. Retina (Philadelphia, PA). 2018;38(6):1063–78.

    Article  CAS  Google Scholar 

  37. Fu C, Gombos DS, Lee J, George GC, Hess K, Whyte A, et al. Ocular toxicities associated with targeted anticancer agents: an analysis of clinical data with management suggestions. Oncotarget. 2017;8(35):58709–27.

    PubMed  PubMed Central  Google Scholar 

  38. National Cancer Institute (U.S.) Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Common terminology criteria for adverse events (CTCAE). 2009.

    Google Scholar 

  39. Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26(4):626–32.

    Article  CAS  PubMed  Google Scholar 

  40. Draganova D, Kerger J, Caspers L, Willermain F. Severe bilateral panuveitis during melanoma treatment by Dabrafenib and Trametinib. J Ophthal Inflamm Infect. 2015;5:17.

    Article  Google Scholar 

  41. Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer. 2006;6(10):803–12.

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol. 2004;22(16):3238–47.

    Article  CAS  PubMed  Google Scholar 

  43. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  44. Abdel-Rahman O, Oweira H, Petrausch U, Helbling D, Schmidt J, Mannhart M, et al. Immune-related ocular toxicities in solid tumor patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Anticancer Ther. 2017;17(4):387–94.

    Article  CAS  PubMed  Google Scholar 

  45. Robert CSJ, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  46. Eltobgy M, Oweira H, Petrausch U, Helbling D, Schmidt J, Mehrabi A, et al. Immune-related neurological toxicities among solid tumor patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Neurother. 2017;17(7):725–36.

    Article  CAS  PubMed  Google Scholar 

  47. Antoun J, Titah C, Cochereau I. Ocular and orbital side-effects of checkpoint inhibitors: a review article. Curr Opin Oncol. 2016;28(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  48. Papavasileiou E, Prasad S, Freitag SK, Sobrin L, Lobo AM. Ipilimumab-induced ocular and orbital inflammation – a case series and review of the literature. Ocul Immunol Inflamm. 2016;24(2):140–6.

    CAS  PubMed  Google Scholar 

  49. Bitton K. Prevalence and clinical patterns of ocular complications associated with anti-PD-1/PD-L1 anticancer immunotherapy. Am J Ophthalmol. 2019.

    Google Scholar 

  50. Fang T, Maberley DA, Etminan M. Ocular adverse events with immune checkpoint inhibitors. J Curr Ophthalmol. 2019;31(3):319–22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68.

    Article  CAS  PubMed  Google Scholar 

  52. Brahmer JR, Lacchetti C, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline summary. J Oncol Pract. 2018;14(4):247–9.

    Article  PubMed  Google Scholar 

  53. Horvat TZ, Adel NG, Dang TO, Momtaz P, Postow MA, Callahan MK, et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with Ipilimumab at memorial Sloan Kettering Cancer center. J Clin Oncol. 2015;33(28):3193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Liu ZG. [Role of epidermal growth factor and its receptor family in ocular surface wound healing]. [Zhonghua yan ke za zhi]. Chinese J Ophthalmol. 2007;43(10):953–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Chambers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A. et al. (2020). Immune-Related Oral, Otologic, and Ocular Adverse Events. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1244. Springer, Cham. https://doi.org/10.1007/978-3-030-41008-7_17

Download citation

Publish with us

Policies and ethics