Skip to main content

Impact of Pyrolysis Techniques on Biochar Characteristics: Application to Soil

  • Chapter
  • First Online:
Book cover Biochar Applications in Agriculture and Environment Management

Abstract

Society currently faces global environmental challenges of the burning of waste plants reside which demand innovative, interdisciplinary and complex solutions. In India about 500 million tons agricultural and agro-industrial residues are being generated annually in the country. A major amount of this agricultural residue farmers treats as waste, are burn in field itself. Hence, there is need to combat these problems through a sustainable management system, which will revive depletion of waste generated from agriculture itself. Conversion of this agricultural waste into biochar through pyrolysis could be a positive solution for minimizing agricultural waste. Production of biochar also offers many opportunities for enhancing soil Physico-chemical characteristics and carbon sequestration. However these characteristics alter with different factors like type and temperature of pyrolysis, biomass holding time. In the present chapter the detailed information of pyrolysis techniques and their impact on soil fertility are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbruzzini TF, Moreira MZ, de Camargo PB, Conz RF, Cerri CEP (2017) Increasing rates of biochar application to soil induce stronger negative priming effect on soil organic carbon decomposition. Agric Res 6:389–398

    Article  CAS  Google Scholar 

  • Agegnehu G, Bass AM, Nelson PN, Bird MI (2016) Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci Total Environ 543:295–306

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean Stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  Google Scholar 

  • Ameloot N, Graber ER, Verheijen FG, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. European J Soil Sci 64:379–390

    Article  CAS  Google Scholar 

  • Awad YM, Lee SS, Kim KH, Ok YS, Kuzyakov Y (2018) Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: effects of biochar, oyster shells, and polymers. Chemosphere 198:40–48

    Article  CAS  Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M (2013) Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bio 5:132–143

    Article  CAS  Google Scholar 

  • Brown TR, Wright MM, Brown RC (2011) Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels Bioprod Biorefin 5:54–68

    Article  CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  Google Scholar 

  • Cao X, Zhong L, Peng X, Sun S, Li S, Liu S, Sun R (2014) Comparative study of the pyrolysis of lignocellulose and its major components: characterization and overall distribution of their biochars and volatiles. Bioresour Technol 155:21–27

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634

    Article  Google Scholar 

  • Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608

    Article  CAS  Google Scholar 

  • de la Rosa JM, Rosado M, Paneque M, Miller AZ, Knicker H (2018) Effects of aging under field conditions on biochar structure and composition: implications for biochar stability in soils. Sci Total Environ 613:969–976

    Article  CAS  Google Scholar 

  • DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL (2015) Biochar effects on soil nutrient transformations. Biochar Environ Manage Sci Technol Implement 2:421–454

    Google Scholar 

  • Edenborn SL, Johnson LM, Edenborn HM, Albarran-Jack MR, Demetrion LD (2018) Amendment of a hardwood biochar with compost tea: effects on plant growth, insect damage and the functional diversity of soil microbial communities. Biol Agric Hortic 34:88–106

    Article  Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653

    Article  CAS  Google Scholar 

  • Fang Y, Singh BP, Luo Y, Boersma M, Van Zwieten L (2018) Biochar carbon dynamics in physically separated fractions and microbial use efficiency in contrasting soils under temperate pastures. Soil Biol Biochem 116:399–409

    Article  CAS  Google Scholar 

  • Fernández-Ugalde O, Gartzia-Bengoetxea N, Arostegi J, Moragues L, Arias-González A (2017) Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area. Sci Total Environ 587:204–213

    Article  CAS  Google Scholar 

  • Gaskin J, Steiner C, Harris K, Das K, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51:2061–2069

    Article  Google Scholar 

  • Güereña DT, Lehmann J, Thies JE, Enders A, Karanja N, Neufeldt H (2015) Partitioning the contributions of biochar properties to enhanced biological nitrogen fixation in common bean (Phaseolus vulgaris). Biol Fertil Soils 51:479–491

    Article  CAS  Google Scholar 

  • Hale L, Luth M, Crowley D (2015) Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol Biochem 81:228–235

    Article  CAS  Google Scholar 

  • Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376:347–361

    Article  CAS  Google Scholar 

  • Huang H, Yao W, Li R, Ali A, Du J, Guo D, Xiao R, Guo Z, Zhang Z, Awasthi MK (2018) Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresour Technol 249:487–493

    Article  CAS  Google Scholar 

  • Hussain F, Hussain I, Khan AHA, Muhammad YS, Iqbal M, Soja G, Reichenauer TG, Yousaf S (2018) Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ Exp Bot 153:80–88

    Article  CAS  Google Scholar 

  • Jain S, Mishra D, Khare P, Yadav V, Deshmukh Y, Meena A (2016) Impact of biochar amendment on enzymatic resilience properties of mine spoils. Sci Total Environ 544:410–421

    Article  CAS  Google Scholar 

  • Jazini R, Soleimani M, Mirghaffari N (2018) Characterization of barley straw biochar produced in various temperatures and its effect on lead and cadmium removal from aqueous solutions. Water Environ J 32:125–133

    Article  CAS  Google Scholar 

  • Jha P, Biswas A, Lakaria B, Rao AS (2010) Biochar in agriculture–prospects and related implications. Curr Sci 99(9):1218–1225

    CAS  Google Scholar 

  • Jung KW, Kim K, Jeong T-U, Ahn K-H (2016) Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour Technol 200:1024–1028

    Article  CAS  Google Scholar 

  • Kelly CN, Benjamin J, CALDERóN FC, Mikha MM, Rutherford DW, Rostad CE (2017) Incorporation of biochar carbon into stable soil aggregates: the role of clay mineralogy and other soil characteristics. Pedosphere 27:694–704

    Article  Google Scholar 

  • Khorram MS, Lin D, Zhang Q, Zheng Y, Fang H, Yu Y (2017) Effects of aging process on adsorption–desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar. J Environ Sci 56:180–191

    Article  Google Scholar 

  • Kim H, Kim J, Kim M, Hyun S, Moon DH (2017) Sorption of sulfathiazole in the soil treated with giant Miscanthus-derived biochar: effect of biochar pyrolysis temperature, soil pH, and aging period. Environ Sci Pollut Res 25(26):1–9

    CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA et al (eds) Prospects of renewable bioprocessing in future energy systems, Biofuel and Biorefinery Technologies 10. Springer, Cham, pp 1–50

    Google Scholar 

  • Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72

    Article  Google Scholar 

  • Lee Y, Park J, Ryu C, Gang KS, Yang W, Park Y-K, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour Technol 148:196–201

    Article  CAS  Google Scholar 

  • Lee J, Yang X, Cho S-H, Kim J-K, Lee SS, Tsang DC, Ok YS, Kwon EE (2017) Pyrolysis process of agricultural waste using CO 2 for waste management, energy recovery, and biochar fabrication. Appl Energy 185:214–222

    Article  CAS  Google Scholar 

  • Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. Biol Approaches Sustain Soil Syst 113:e530

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strateg Glob Chang 11:403–427

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Leng L, Huang H (2018) An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol 270:627–642

    Article  CAS  Google Scholar 

  • Li G, Zhu W, Zhang C, Zhang S, Liu L, Zhu L, Zhao W (2016) Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour Technol 206:16–22

    Article  CAS  Google Scholar 

  • Li L, Wang S, Li X, Li T, He X, Tao Y (2018) Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil. Sci Total Environ 640:1034–1043

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87:151–157

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3:313–339

    Google Scholar 

  • Naisse C, Girardin C, Lefevre R, Pozzi A, Maas R, Stark A, Rumpel C (2015) Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. GCB Bioenergy 7:488–496

    Article  CAS  Google Scholar 

  • Nigam N, Khare P, Yadav V, Mishra D, Jain S, Karak T, Panja S, Tandon S (2019a) Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. Ecotoxicol Environ Saf 172:411–422

    Article  CAS  Google Scholar 

  • Nigam N, Yadav V, Mishra D, Karak T, Khare P (2019b) Biochar amendment alters the relation between the Pb distribution and biological activities in soil. Int J Environ Sci Technol:1–12

    Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MA (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • Prasad M, Tzortzakis N, McDaniel N (2017) Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests. J Environ Manag

    Google Scholar 

  • Pressler Y, Foster EJ, Moore JC, Cotrufo MF (2017) Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland. GCB Bioenergy 9:1344–1355

    Article  Google Scholar 

  • Qiu M, Sun K, Jin J, Gao B, Yan Y, Han L, Wu F, Xing B (2014) Properties of the plant-and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene. Sci Rep (1):4

    Google Scholar 

  • Quispe I, Navia R, Kahhat R (2017) Energy potential from rice husk through direct combustion and fast pyrolysis: a review. Waste Manag 59:200–210

    Article  CAS  Google Scholar 

  • Rechberger MV, Kloss S, Rennhofer H, Tintner J, Watzinger A, Soja G, Lichtenegger H, Zehetner F (2017) Changes in biochar physical and chemical properties: accelerated biochar aging in an acidic soil. Carbon 115:209–219

    Article  CAS  Google Scholar 

  • Schloter M, Dilly O, Munch J (2003) Indicators for evaluating soil quality. Agric Ecosys Environ 98:255–262

    Article  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutri Soil Sci 175:410–422

    Article  CAS  Google Scholar 

  • Shackle S, Sohi S, Ibarrola R, Hammond J, Mašek O, Brownsort P, Haszeldine S (2012) Biochar as a tool for climate change mitigation and soil management. Encyclopedia of Sustainabilty Science and Technology, Springer, New York

    Book  Google Scholar 

  • Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: managing environmental pollution, 2nd edn. Springer, Cham, pp 123–146

    Chapter  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017b) Impact of rice husk biochar on nitrogen mineralization and methanotrophs community dynamics in paddy soil. Int J Pure App Biosci 5(5):428–435

    Article  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017c) Application of biochar in soil fertility and environmental management: a review. Br Environ Pharmacol Life Sci 6(12):07–14

    CAS  Google Scholar 

  • Singh C, Tiwari S, Gupta VK, Singh JS (2018) The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. Catena 171:485–493

    Article  CAS  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2019) Biochar: a sustainable tool in soil 2 pollutant bioremediation. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 475–494

    Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    Article  CAS  Google Scholar 

  • Stavi I (2012) The potential use of biochar in reclaiming degraded rangelands. J Environ Plan Manag 55:657–665

    Article  Google Scholar 

  • Stavi I (2013) Biochar use in forestry and tree-based agro-ecosystems for increasing climate change mitigation and adaptation. Int J Sustainable Dev World Ecol 20:166–181

    Article  Google Scholar 

  • Suliman W, Abu-Lail N, Fortuna AM, Harsh J, Garcia-Perez M (2015) Effect of pyrolysis temperature and post-pyrolysis oxidation on the physico-chemical properties of biochars. Chem Eng J 373:44–57

    Google Scholar 

  • Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  CAS  Google Scholar 

  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard FL, Alakukku L, Helenius J (2014) Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374:89–107

    Article  CAS  Google Scholar 

  • Thies JE, Rillig MC, Graber ER (2015) Biochar effects on the abundance, activity and diversity of the soil biota. Biochar Environ Manage Sci Technol Implement 2:327–389

    Google Scholar 

  • Tiwari S, Singh C, Singh JS (2018) Land use changes: a key ecological driver regulating methanotrophs abundance in upland soils. Energy Ecol Environ 3(6):355–371

    Article  Google Scholar 

  • Tiwari S, Singh C, Boudh S, Rai PK, Gupta VK, Singh JS (2019a) Land use change: a key ecological disturbance declines soil microbial biomass in dry tropical uplands. J Environ Manag 242:1–10

    Article  CAS  Google Scholar 

  • Tiwari S, Singh C, Singh JS (2019b) Wetlands: a major natural source responsible for methane emission. In: Upadhyay AK et al (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore, pp 59–74

    Google Scholar 

  • Uzoma K, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Wang X, Zhou W, Liang G, Song D, Zhang X (2015) Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. S Total Environ 538:137–144

    Article  CAS  Google Scholar 

  • Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456

    Article  Google Scholar 

  • Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276

    Article  CAS  Google Scholar 

  • Yadav V, Baruah B, Khare P (2013) Comparative study of thermal properties of bio-coal from aromatic spent with low rank sub-bituminous coals. Bioresour Technol 137:376–385

    Article  CAS  Google Scholar 

  • Yadav V, Khare P, Deshmukh Y, Shanker K, Nigam N, Karak T (2018a) Performance of biochar derived from Cymbopogon winterianus waste at two temperatures on soil properties and growth of Bacopa monneri. Commun Soil Sci Plant Anal 49:2741–2764

    Article  CAS  Google Scholar 

  • Yadav V, Khare P, Deshmukh Y, Shanker K, Nigam N, Karak T (2018b) Performance of biochar derived from Cymbopogon winterianus waste at two temperatures on soil properties and growth of Bacopa monneri. Commun Soil Sci Plant Anal 49(22):1–24

    Article  CAS  Google Scholar 

  • Yadav V, Jain S, Mishra P, Khare P, Shukla AK, Karak T, Singh AK (2019a) Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Appl Soil Ecol 138:144–155

    Article  Google Scholar 

  • Yadav V, Karak T, Singh S, Singh AK, Khare P (2019b) Benefits of biochar over other organic amendments: responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Ind Crops Prod 131:96–105

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yang Y, Sun K, Han L, Jin J, Sun H, Yang Y, Xing B (2018) Effect of minerals on the stability of biochar. Chemosphere 204:310–317

    Article  CAS  Google Scholar 

  • Zama EF, Zhu Y-G, Reid BJ, Sun G-X (2017) The role of biochar properties in influencing the sorption and desorption of Pb (II), Cd (II) and As (III) in aqueous solution. J Clean Prod 148:127–136

    Article  CAS  Google Scholar 

  • Zhang X, Sarmah AK, Bolan NS, He L, Lin X, Che L, Tang C, Wang H (2016) Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere 142:28–34

    Article  CAS  Google Scholar 

  • Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DC, Hou D (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987

    Article  CAS  Google Scholar 

  • Zheng H, Wang X, Chen L, Wang Z, Xia Y, Zhang Y, Wang H, Luo X, Xing B (2018) Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ 41:517–532

    Article  CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, V., Khare, P. (2020). Impact of Pyrolysis Techniques on Biochar Characteristics: Application to Soil. In: Singh, J., Singh, C. (eds) Biochar Applications in Agriculture and Environment Management. Springer, Cham. https://doi.org/10.1007/978-3-030-40997-5_2

Download citation

Publish with us

Policies and ethics