Skip to main content

Biochar: A New Environmental Paradigm in Management of Agricultural Soils and Mitigation of GHG Emission

  • Chapter
  • First Online:

Abstract

Biochar, a co-product of the pyrolytic conversion of biomass and biowastes to biofuel is a carbon rich recalcitrant material. It has received much attention in the recent times for its prospective application in various fields viz. as a soil amendment for improving the physical, chemical, and biological qualities of agricultural soils, as an adsorbent for removal of various organic and inorganic contaminants in water, for removal of pesticides residues in soil, for correcting soil acidity, as a precursor for chemical synthesis, for industrial applications such as supercapacitor application, as a support material for fuel cells, for enhancement in biogas generation to name a few. In addition to all these, biochar’s green-house gas mitigation potential, and C-sequestration potential are two most significant attributes that has made biochar a suitable component for SDGs. Further, these applications have made biochar as one of the most researched topics in recent times. The ease of biochar production is also another advantage which can be beneficial for farmers even with a marginal land holding. In this chapter, an attempt has been made to discuss the role of biochar in management of agricultural soils, as well as its vast environmental application possibilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  Google Scholar 

  • Agbna GHD, Dongli S, Zhipeng L, Elshaikh NA, Guangcheng S, Timm LC (2017) Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci Hortic 222:3–10

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    CAS  Google Scholar 

  • Ajayi AE, Horn R (2017) Biochar-induced changes in soil resilience: effects of soil texture and biochar dosage. Pedosphere 27:236–247

    Article  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015a) Biochar mitigates salinity stress in potato. J Agron Crop Sci. https://doi.org/10.1111/jac.12132

  • Akhtar SS, Andersen MN, Liu F (2015b) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manage 158:61–68

    Article  Google Scholar 

  • Akhter A, Hage-Ahmed K, Soja G, Steinkellner S (2016) Potential of Fusarium wilt inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil 406:425–440

    Article  CAS  Google Scholar 

  • Allen RL (1847) A brief compend of American agriculture, 2nd edn. C. M. Saxton, New York. https://doi.org/10.5962/bhl.title.20151

    Book  Google Scholar 

  • Anders E, Watzinger A, Rempt F et al (2013) Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agric Food Sci 22:404–423

    Article  Google Scholar 

  • Anyanwu IN, Alo MN, Onyekwere AM, Crosse JD, Nworie O, Chamba EB (2018) Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicol Environ Safe 153:116–126

    Article  CAS  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD et al (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24:109–122

    Article  CAS  Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in northern Laos. Soil physical properties, leaf SPAD and grain yield. Field Crops Res 111:81–84

    Article  Google Scholar 

  • Bamminger C, Poll C, Sixt C, Högy P, Wüst D, Kandeler E, Marhan S (2016) Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agric Ecosyst Environ 233:3–10

    Article  CAS  Google Scholar 

  • Bass AM, Bird MI, Kay G, Muirhead B (2016) Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci Total Environ 550:459–470

    Article  CAS  Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M (2013) Assessing potential of biochar for increasing water-holding capacity of sandy soils. Gcb Bioenergy 5(2):3–10

    Article  CAS  Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

    Article  CAS  Google Scholar 

  • Béghin-Tanneau R, Guérin F, Guiresse M, Kleiber D, Scheiner JD (2019) Carbon sequestration in soil amended with anaerobic digested matter. Soil Till Res 192:87–94

    Article  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Glob Chang Biol Bioener 5:202–214

    Article  CAS  Google Scholar 

  • Bonanomi G, Ippolito F, Scala F (2015) A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. J Plant Pathol 97:223–234

    Google Scholar 

  • Brady NC, Well RR (2012) The nature and properties of soils, 14th edn. Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia

    Google Scholar 

  • Brassard P, Godbout S, Raghavan V (2016) Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J Environ Manag 181:484–497

    Article  CAS  Google Scholar 

  • Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37:321–333

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101(14):5222–5228

    Article  CAS  Google Scholar 

  • Cao XD, Ma LN, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45(11):4884–4889

    Article  CAS  Google Scholar 

  • Case SD, McNamara NP, Reay DS, Whitaker J (2014) Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? Gcb Bioenergy 6(1):76–89

    Article  CAS  Google Scholar 

  • Cayuela ML, Sanchez-Monedero M, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:1732

    Article  CAS  Google Scholar 

  • Cayuela ML, Jeffery S, van Zwieten L (2015) The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric Ecosyst Environ 202:135–138

    Article  CAS  Google Scholar 

  • Chagger HK, Kendall A, McDonald A, Pourkashanian M, Williams A (1998) Formation of dioxins and other semi-volatile compounds in biomass combustion. Appl Energy 60:101–114

    Article  CAS  Google Scholar 

  • Chan KY, Xu K (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan Publishers Ltd, London

    Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45(8):629–634

    Article  CAS  Google Scholar 

  • Chan KY, van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884

    Article  CAS  Google Scholar 

  • Chen M, Wang D, Yang F, Xu X, Xu N, Cao X (2017) Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environ Pollut 230:540–549

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75(8):1021–1027

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Organ Geochem 37:1477–1488

    Article  CAS  Google Scholar 

  • Choppala G, Bolan N, Kunhikrishnan A et al (2015) Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environ Sci Pollut Res 22(12):8969–8978

    Article  CAS  Google Scholar 

  • Christoph GT, Wenceslau L, Johannes N, Thomas M, de Vasconcelos JL, Winfried EHB, Zech W (2007) Long-term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    Article  CAS  Google Scholar 

  • Copley TR, Aliferis KA, Jabaji S (2015) Maple bark biochar affects Rhizoctonia solani metabolism and increases damping-off severity. Phytopathology 105:1334–1346

    Article  CAS  Google Scholar 

  • Cornelissen G, Martinsen V, Shitumbanuma V, Alling V, Breedveld GD, Rutherford DW, Sparrevik M, Hale SE, Obia A, Mulder J (2013a) Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agron J 3:256–274

    Article  Google Scholar 

  • Cornelissen G, Rutherford DW, Arp HPH, Dörsch P, Kelly CN, Rostad CE (2013b) Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environ Sci Technol 47:7704–7712

    Article  CAS  Google Scholar 

  • De Gryze S, Cullen M, Durschinger L, Lehmann J, Bluhm D, Six J (2010) Evaluation of opportunities for generating carbon offsets from soil sequestration of biochar. In: An issue paper commissioned by climate action reserve, final version

    Google Scholar 

  • De Tender CA, Debode J, Vandecasteele B, D’Hose T, Cremelie P, Haegeman A, Ruttink T, Dawyndt P, Maes M (2016) Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl Soil Ecol 107:1–12

    Article  Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  • Dendooven L, Patino-Zúniga L, Verhulst N, Luna-Guido M, Marsch R, Govaerts B (2012) Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agric Ecosyst Environ 152:50–58

    Article  Google Scholar 

  • Deng W, Van Zwieten L, Lin Z, Liu X, Sarmah AK, Wang H (2017) Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol. J Soils Sediments 17:632–640

    Article  CAS  Google Scholar 

  • Díaz-Zorita M, Duarte GA, Grove JH (2002) A review of no-till systems and soil management for sustainable crop production in the sub-humid and semiarid Pampas of Argentina. Soil Tillage Res 65:1–18

    Article  Google Scholar 

  • Downie AE, van Zwieten L, Smernik RJ, Morris S, Munroe PR (2011) Terra preta Australis: reassessing the carbon storage capacity of temperate soils. Agric Ecosyst Environ 140:137–147

    Article  Google Scholar 

  • Egamberdieva D, Reckling M, Wirth S (2017) Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur J Soil Biol 78:3–10

    Article  CAS  Google Scholar 

  • Elad Y, David DR, Meller Harel Y, Borenshtein M, Ben Kalifa H, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  Google Scholar 

  • Elad Y, Cytryn E, Harel YM, Lew B, Graber ER (2011) The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr 50(3):335–349

    Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease 95:960–966

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S et al (2015) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  CAS  Google Scholar 

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Feng LIANG, Gui-tong LI, Qi-mei LIN, Xiao-rong ZHAO (2014) Crop Yield and Soil Properties in the First 3 Years After Biochar Application to a Calcareous Soil. J Integr Agric 13(3):525–532

    Article  CAS  Google Scholar 

  • Fidel RB, Laird DA, Parkin TB (2019) Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst 3(1):8

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35(6):837–843

    Article  CAS  Google Scholar 

  • Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioener 31:426–432

    Article  CAS  Google Scholar 

  • Frenkel O, Jaiswal AK, Elad Y, Lew B, Kammann C, Graber ER (2017) The effect of biochar on plant diseases: what should we learn while designing biochar substrates? J Environ Eng Landsc Manag 25:105–113

    Article  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Gaunt J, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158

    Article  CAS  Google Scholar 

  • Ghorbani M, Asadi H, Abrishamkesh S (2019) Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int Soil Water Conserv Res 7:258–263

    Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Graber E, Tsechansky L, Lew B, Cohen E (2014a) Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. Eur J Soil Sci 65:162–172

    Article  CAS  Google Scholar 

  • Graber ER, Frenkel O, Jaiswal AK, Elad Y (2014b) How may biochar influence severity of diseases caused by soil borne pathogens? Carbon Manage 5:169–183

    Article  CAS  Google Scholar 

  • Gupta VK, Schmoll M, Estrella AH, Upadhyay RS, Druzhinina I, Tuohy MG (2014) Biotechnol Biol Trichoder:543–549

    Google Scholar 

  • Haider G, Koyro HW, Azam F, Steffens D, Müller C, Kammann C (2014) Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 395:141–157

    Article  CAS  Google Scholar 

  • Hailegnaw NS, Mercl F, Pračke K, Száková J, Tlustoš P (2019) High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma 338:48–55

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D et al (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    Article  CAS  Google Scholar 

  • Hansen V, Müller-Stöver D, Ahrenfeldt J, Holm JK, Henriksen UB, Hauggaard-Nielsen H (2015) Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenergy 72:300–308

    Article  CAS  Google Scholar 

  • Hansen V, Müller-Stöver D, Munkholm LJ, Peltre C, Hauggaard-Nielsen H, Jensen LS (2016) The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study. Geoderma 269:99–107

    Article  CAS  Google Scholar 

  • Harel YM, Elad Y, Rav-David D et al (2012) Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil 357(1):245–257

    Article  CAS  Google Scholar 

  • Hass A, Gonzalez JM, Lima IM, Godwin HW, Halvorson JJ, Boyer DG (2012) Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J Environ Qual 41:1096–1106

    Article  CAS  Google Scholar 

  • Hawthorne I, Johnson MS, Jassal RS, Black TA, Grant NJ, Smukler SM (2017) Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J Environ Manage 192:203–214

    Article  CAS  Google Scholar 

  • He Y, Zhou X, Jiang L, Li M, Du Z, Zhou G, Shao J, Wang X, Xu Z, Hosseini Bai S, Wallace H (2017) Effects of biochar application on soil greenhouse gas fluxes: a meta analysis. Gcb Bioenergy 9(4):743–755

    Article  CAS  Google Scholar 

  • Hilscher A, Knicker H (2011) Carbon and nitrogen degradation on molecular scale of grass-derived pyrogenic organic material during 28 months of incubation in soil. Soil Biol Biochem 43:261–270

    Article  CAS  Google Scholar 

  • Hoitink HA, Fahy PC (1986) Basis for the control of soil borne plant pathogens with composts. Ann Rev Phytopathol 24(1):93–114

    Article  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioener 57:196–204. https://char-grow.com/biochar-impact-nutrient-water-retention

    Article  CAS  Google Scholar 

  • Huang R, Tian D, Liu J, Lv S, He X, Gao M (2018) Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric Ecosyst Environ 265:576–586

    Article  CAS  Google Scholar 

  • IPCC (2013) Summary for policy markers. In: Stocker et al (eds) Climate change 2013: In: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 3–29

    Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118

    Article  CAS  Google Scholar 

  • Jaiswal AK, Frenkel O, Elad Y, Lew B, Graber ER (2015) Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: the “Shifted Rmax-Effect”. Plant Soil 395:125–140

    Article  CAS  Google Scholar 

  • Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O (2017) Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci Rep 7. https://doi.org/10.1038/srep44382

  • Jaiswal AK, Elad Y, Cytryn E, Graber ER, Frenkel O (2018) Activating biochar by manipulating the bacterial and fungal microbiome through pre-conditioning. New Phytol. https://doi.org/10.1111/nph.15042

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Jeffery S, Verheijen FG, Kammann C, Abalos D (2016) Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem 101:251–258

    Article  CAS  Google Scholar 

  • Jones DL, Edwards-Jones G, Murphy DV (2011a) Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem 43(4):804–813

    Article  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, Deluca TH (2011b) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515

    Article  CAS  Google Scholar 

  • Kammann CI, Linsel S, Gößling JW, Koyro HW (2011) Influence of biochar on drought tolerance of Chenopodium quinoa, willd and on soil-plant relations. Plant Soil 345:195–210. https://doi.org/10.1007/s11104-011-0771-5

    Article  CAS  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agric Ecosyst Environ 140(1–2):309–313

    Article  CAS  Google Scholar 

  • Katterer T, Ronbroeck D, Andren O et al (2019) Bio char addition persistently increased soil fertility and yields in Maize-soybean rotation over 10 years in sub-humid regions of Kenya. Field Crops Res 235:18–26

    Article  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Khorram SM, Fatemi A, Khan MA, Kiefer R, Jafarnia S (2018) Potential risk of weed outbreak by increasing biochar’s application rates in slow-growth legume, lentil (Lens culinaris medik.). J Sci Food Agric 98(6):2080–2088

    Article  CAS  Google Scholar 

  • Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, Wessolek G, Kim KH (2016) Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142:153–159

    Article  CAS  Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Aus J Soil Res 48(7):577–585

    Article  CAS  Google Scholar 

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Klasson KT, Ledbetter CA, Uchimiya M, Lima IM (2013) Activated biochar removes 100% dibromochloropropane from field well water. Environ Chem Lett 11(3):271–275

    Article  CAS  Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic carbon? Environ Chem 7:320–332

    Article  CAS  Google Scholar 

  • Knoblauch C, Maarifat AA, Pfeiffer EM, Haefele SM (2011) Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol Biochem 43:1768–1778

    Article  CAS  Google Scholar 

  • Kong LL, Liu WT, Zhou QX (2014) Biochar: an effective amendment for remediating contaminated soil. In: Reviews of environmental contamination and toxicology. Springer, Cham, pp 83–99

    Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Chapter three—biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Donald LS (ed) Advances in agronomy. Academic, New York, pp 103–143

    Google Scholar 

  • Kumar A, Singh JS (2017) Cyanoremediation: a green-clean tool for decontamination of synthetic pesticides from agro-and aquatic ecosystems. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol (2) managing environmental pollution. Springer, Cham, pp 59–83

    Chapter  Google Scholar 

  • Kumar A, Kaushal S, Saraf S, Singh JS (2017) Cyanobacterial biotechnology: an opportunity for sustainable industrial production. Clim Change Environ Sustain 5(1):97–110

    Article  Google Scholar 

  • Kumar A, Joseph S, Tsechansky L, Privat K, Schreiter IJ, Schüth C et al (2018) Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Sci Total Environ 626:953–961

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Kwapinski W, Byrne CMP, Kryachko E, Wolfram P, Adley C, Leahy JJ, Novotny E, Hayes MHB (2010) Biochar from biomass and waste. Waste Biomass Valor 1:177–189

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3–4):436–442

    Article  CAS  Google Scholar 

  • Lal R (1999) World soils and greenhouse effect. IGBP Global Change Newsl 37:4–5

    Google Scholar 

  • Lal R (2004) Soil carbon Sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Lehmann J (2007a) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J (2007b) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J (2009) Terra preta Nova–where to from here? In: Amazonian dark Earths: Wim Sombroek’s vision. Springer, Dordrecht, pp 473–486

    Chapter  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan Publishers Ltd., London

    Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation. Earthscan/Routledge, London, pp 1–1214

    Google Scholar 

  • Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. In: Uphoff N, Ball AS, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor and Francis, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Change 11:403–427

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Li HB, Xiao L, Evandro B et al (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478

    Article  CAS  Google Scholar 

  • Lian F, Xing B (2017) Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential Risk. Environ Sci Technol 51:13517–13532

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Liang BQ, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizãoc FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Kimber S, VanZwieten L (2012) Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil 357:369–380

    Article  CAS  Google Scholar 

  • Liu QS, Liu Y, Show KY, Tay JH (2009) Toxicity effect of phenol on aerobic granules. Environ Technol 30:69–74

    Article  CAS  Google Scholar 

  • Liu B, Mørkved PT, Frostegård Å, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72(3):407–417

    Article  CAS  Google Scholar 

  • Liu XY, Qu JJ, Li LQ, Zhang AF, Zheng JF, Zheng JW, Pan GX (2012) Can biochar be an ecological engineering technology to depress N2O emission in rice paddies?—a cross site field experiment from South China. Ecol Eng 42:168–173

    Article  Google Scholar 

  • Liu XY, Zhang AF, Ji CY, Joseph S, Bian RJ, Li LQ, Pan GX, PazFerreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594

    Article  CAS  Google Scholar 

  • Liu XY, Li LQ, Bian RJ, Chen D, Qu JJ, Wanjiru Kibue G, Pan GX, Zhang XH, Zheng JW, Zheng JF (2014) Effect of biochar amendment on soil-silicon availability and rice uptake. J Plant Nutr Soil Sci 177:91–96

    Article  CAS  Google Scholar 

  • Liu C, Wang H, Tang X, Guan Z, Reid BJ, Rajapaksha AU, Ok YS, Sun H (2015) Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environ Sci Pollut Res 23:995–1006

    Article  CAS  Google Scholar 

  • Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J, Jin Y, Zou J (2016) Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. Gcb Bioenergy 8(2):392–406

    Article  CAS  Google Scholar 

  • Liu Z, He T, Cao T, Yang T, Meng J, Chen W (2017a) Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. J Soil Sci Plant Nutrit 17(2):515–528

    CAS  Google Scholar 

  • Liu C, Liu F, Ravnskov S, Rubæk GH, Sun Z, Andersen MN (2017b) Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J Agron Crop Sci 203(2):03–10

    Article  Google Scholar 

  • Lorenz K, Lal R (2014) Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Soil Sci Plant Nutrit Soil Sci 177:651–670

    Article  CAS  Google Scholar 

  • Lu H, Zhang W, Yang Yet al. (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862

    Article  CAS  Google Scholar 

  • Lu W, Ding W, Zhang J, Li Y, Luo J, Bolan N, Xie Z (2014) Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biol Biochem 76:12–21

    Article  CAS  Google Scholar 

  • Lua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrol 72:279–287

    Article  CAS  Google Scholar 

  • Luo Y, Jiao Y, Zhao X, Li G, Zhao L, Meng H (2014) Improvement to maize growth caused by biochars derived from six feedstock’s prepared at three different temperatures. J Integ Agric 13:533–540

    Article  Google Scholar 

  • Luo Y, Yu ZY, Zhang KL, Xu JM, Brookes PC (2016) The properties and functions of biochars in forest ecosystems. J Soils Sed 16:2005–2020

    Article  CAS  Google Scholar 

  • Luo Y, Zang HD, Yu ZY, Chen ZY, Gunina A, Kuzyakov Y, Xu JM, Zhang KL, Brookes PC (2017) Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biol Biochem 106:28–35

    Article  CAS  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366–1379

    Article  Google Scholar 

  • Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem 62:137–146

    Article  CAS  Google Scholar 

  • Marks EA, Alcañiz JM, Domene X (2014) Unintended effects of biochars on short-term plant growth in a calcareous soil. Plant Soil 385(1–2):87–105

    Article  CAS  Google Scholar 

  • Marris E (2006) Putting the carbon back: black is the new green. Nature 442(7103):624–626

    Article  CAS  Google Scholar 

  • Martin SM, Kookana RS, Van Zwieten L, Krull E (2012) Marked changes in herbicide sorption-desorption upon ageing of biochars in soil. J Hazard Mater 231:70–78

    Article  CAS  Google Scholar 

  • Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945

    Article  Google Scholar 

  • Mau AE, Utami SR (2014) Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. J Degr Min Lands Manage 1:69–74

    Google Scholar 

  • McHenry MP (2009) Agricultural biochar production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric Ecosyst Environ 129:1–7

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Mensah AK, Frimpong KA (2018) Bio char and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Interna J Agron 2018:8 pages. https://doi.org/10.1155/2018/6837404

  • Mickan BS, Abbott LK, Stefanova K, Solaiman ZM (2016) Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza 26(6):3–10

    Article  CAS  Google Scholar 

  • Milne E, Powlson DS, Cerri CE (2007) Soil carbon stocks at regional scales (preface). Agric Ecosyst Environ 122:1–2

    Article  Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen ZS, Cheng K, Das BS, Field DJ (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254

    Article  CAS  Google Scholar 

  • Mørkved PT, Dörsch P, Bakken LR (2007) The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol Biochem 39:2048–2057

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3:313–339

    Article  Google Scholar 

  • Mukherjee A, Lal R (2014) The biochar dilemma. Soil Res 52:217–230

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4):247–255

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R, Zimmerman AR (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 487:26–36

    Article  CAS  Google Scholar 

  • Mulcahy DN, Mulcahy DL, Dietz D (2013) Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J Arid Environ 88:3–10

    Article  Google Scholar 

  • Nadeem SM, Imran M, Naveed M, Khan MY, Ahmad M, Zahir ZA, Crowley DE (2017) Synergistic use of biochar, compost and plant growth promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric 97(15):5139–5145

    Article  CAS  Google Scholar 

  • Nelson NO, Agudelo SC, Yuan W, Gan J (2011) Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci 176:218–226

    CAS  Google Scholar 

  • Nerome M, Toyota K, Islam T et al (2005) Suppression of bacterial wilt of tomato by incorporation of municipal biowaste charcoal into soil. Soil Microorganisms 59:9–14

    Google Scholar 

  • Nguyen TH, Cho H-H, Poster DL, Ball WP (2007) Evidence for a Pore-Filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ Sci Technol 41(4):1212–1217

    Article  CAS  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15(1):3–20

    Article  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a south eastern coastal plain soil. Soil Sci 174(2):105–112

    Article  CAS  Google Scholar 

  • Novak JM, Sigua GC, Ducey TF et al (2019) Designer Bio char impact on corn grain yields, biomass production, and fertility properties of a highly weathered ultisol. Environments 6(6):64

    Article  Google Scholar 

  • O’Connor D, Peng T, Zhang J et al (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619:815–826

    Article  CAS  Google Scholar 

  • Obia A, Mulder J, Martinsen V, Cornelissen G, Børresen T (2016) In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till Res 155:35–44

    Article  Google Scholar 

  • Ogawa M (1994) Symbiosis of people and nature in the tropics. Farm Japan 28:10–34

    Google Scholar 

  • Oguntunde PG, Fosu M, Ajayi AE, van de Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39:295–299

    Article  CAS  Google Scholar 

  • Page-Dumroese DS, Coleman M, Thomas SC (2015) Opportunities and uses of biochar on forest sites in North America. In: Bruckman VJ, Varol EA, Uzun BB, Liu J (eds) Biochar: a regional supply chain approach in view of mitigating climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Painter TJ (2001) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum dominated peat bogs. Carbohydr Polym 36:335–347

    Article  Google Scholar 

  • Pan GX, Smith P, Pan WN (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric Ecosyst Environ 129:344–348

    Article  Google Scholar 

  • Paneque M, José M, Franco-Navarro JD, Colmenero-Flores JM, Knicker H (2016) Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena 147:3–10

    Article  CAS  Google Scholar 

  • Petrović M, Eljarrat E, López de Alda MJ, Barceló D (2001) Analysis and environmental levels of endocrine-disrupting compounds in freshwater sediments. TrAC Trend Anal Chem 20:637–648

    Article  Google Scholar 

  • Piash MI, Hossain F, Parveen Z (2019) Effect of bio char and fertilizer application on the growth and nutrient accumulation of rice and vegetable in two contrast soils. Acta Sci Agric 3(2):74–83

    Google Scholar 

  • Prendergast-Miller MT, Duvall M, Sohi SP (2013) Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65:173–185

    Article  CAS  Google Scholar 

  • Pressler Y, Foster EJ, Moore JC, Cotrufo MF (2017) Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland. GCB Bioenergy 9(8):1344–1355

    Article  Google Scholar 

  • Qin HZ, Liu YY, Li LQ, Pan GX, Zhang XH, Zheng JW (2012) Adsorption of cadmium in solution by biochar from household biowaste. J Ecol Rural Environ 28:181–186

    CAS  Google Scholar 

  • Qin G, Gong D, Fan MY (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegrad 85:150–155

    Article  CAS  Google Scholar 

  • Quayle WC (2010) Biocahr potential for soil improvement and soil fertility. In: IREC farmers Newsletter; Large Area No. 182

    Google Scholar 

  • Quin P, Joseph S, Husson O, Donne S, Mitchell D, Munroe P, Phelan D, Cowie A, Van Zwieten L (2015) Lowering N2O emissions from soils using eucalypt biochar: the importance of redox reactions. Sci Rep 5:16773

    Article  CAS  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284

    Article  CAS  Google Scholar 

  • Ramzani PMA, Shan L, Anjum S, Ronggui H, Iqbal M, Virk ZA, Kausar S (2017) Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiol Biochem 116:3–10

    Article  CAS  Google Scholar 

  • Rasa K, Heikkinen J, Hannula M, Arstila K, Kulju S, Hyväluoma J (2018) How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioener 119:346–353

    Article  CAS  Google Scholar 

  • Retan GA (1915) Charcoal as a means of solving some nursery problems. J Forest 13(1):25–30

    Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833

    Article  CAS  Google Scholar 

  • Rogovska N, Laird DA, Rathke SJ, Karlen DL (2014) Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230:3–10

    Google Scholar 

  • Rogovska N, Laird D, Leandro L, Aller D (2017) Biochar effect on severity of soybean root disease caused by Fusarium virguliforme. Plant Soil 413:111–126

    Article  CAS  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration, baltimore, USA, vol 208

    Google Scholar 

  • Rondon M, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 43:699–708

    Article  Google Scholar 

  • Sackett TE, Basiliko N, Noyce GL, Winsborough C, Schurman J, Ikeda C, Thomas SC (2015) Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 7:1062–1074

    Article  CAS  Google Scholar 

  • Sanchez ME, Lindao E, Margaleff D, Martinez O, Moran A (2009) Pyrolysis of agricultural residues from rape and sunflower: production and characterization of biofuels and biochar soil management. J Anal Appl Pyrolysis 85:142–144

    Article  CAS  Google Scholar 

  • Santín C, Doerr SH, Merino A, Bucheli TD, Bryant R, Ascough P, Gao X, Masiello CA (2017) Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci Rep 7(1):11233

    Article  CAS  Google Scholar 

  • Sarmah AK, Srinivasan P, Smernik RJ, Manley-Harris M, Antal MJ Jr, Downie A, Van Zwieten L (2010) Retention capacity of biocharamended New Zealand dairy farm soil for an estrogenic steroid hormone and its primary metabolite. Aust J Soil Res 48:648–658

    Article  CAS  Google Scholar 

  • Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345(1–2):47–58

    Article  CAS  Google Scholar 

  • Schiemenz K, Eichler-Loebermann B (2010) Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr Cycl Agroecosyst 87:471–482

    Article  Google Scholar 

  • Schimmelpfennig S, Glaser B (2012) One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 41(4):1001–1013

    Article  CAS  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Jager C (2002) Carbon isotope geochemistry and nano-morphology of soil black carbon: black chernozemic soils in central Europe originate from ancient biomass burning. Glob Biogeochem Cyc 16:1123

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  Google Scholar 

  • Shang QY, Yang XX, Gao CM, Wu PP, Liu JJ, Xu YC, Shen QR, Zou JW, Guo SW (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Chang Biol 17:2196–2210

    Article  Google Scholar 

  • Sharma S, Bhattacharya A (2017) Drinking water contamination and treatment techniques. Appl Water Sci 7(3):1043–1067

    Article  CAS  Google Scholar 

  • Shin J, Jang E, Park S, Ravindran B, Chang SW (2019) Agro-environmental impacts, carbon sequestration and profit analysis of blended biochar pellet application in the paddy soil-water system. J Environ Manage 244:92–98

    Article  CAS  Google Scholar 

  • Singh JS (2013) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Change Environ Sustain 1(1):20–24

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015) Biodiversity: current perspective. Clim Change Environ Sustain 3(1):71–72

    Article  Google Scholar 

  • Singh JS (2016) Microbes play major roles in ecosystem services. Clim Change Environ Sustain 3:163–167

    Article  Google Scholar 

  • Singh JS (ed) (2019) New and future developments in microbial biotechnology and bioengineering: microbes in soil, crop and environmental sustainability. Elsevier, San Diego

    Google Scholar 

  • Singh JS, Boudh S (2016) Climate change resilient crops to sustain Indian agriculture. Clim Change Environ Sustain 5:97–110

    Google Scholar 

  • Singh BP, Cowie AL (2008) A novel approach, using 13C natural abundance, for measuring decomposition of biochars in soil. In: Currie LD, Yates LJ (eds) Carbon and nutrient management in agriculture, fertilizer and lime research centre workshop proceedings. Massey University, Palmerston North

    Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010a) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010b) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48:516–525

    Article  CAS  Google Scholar 

  • Skjemstad JO, Reicosky DC, McGowan JA, Wilts AR (2002) Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249–1255

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B (2007a) Greenhouse gas mitigation in agriculture. Philos Trans Royal Soc B Biol Sci 363(1492):789–813

    Article  CAS  Google Scholar 

  • Smith P, Martino Z, Cai ZC, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007b) Agriculture. In: Metz B, Davidson OR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 498–540

    Google Scholar 

  • Smith P, Marino D, Cai ZC, Gwary D, Janzen H, Kumar P (2008a) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008b) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363:789–813

    Article  CAS  Google Scholar 

  • Sohi S (2012) Carbon storage with benefits. Science 338:1034–1035

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Song Y, Wang F, Bian YR, Kengara FO, Jia MY, Xie ZB, Jiang X (2012) Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J Hazard Mater 217:391–397

    Article  CAS  Google Scholar 

  • Song X, Pan G, Zhang C, Zhang L, Wang H (2016) Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis. Ecosyst Health Sustain 2(2):e01202

    Article  Google Scholar 

  • Sorensen RB, Lamb MC (2016) Crop yield response to increasing biochar rates. J Crop Improve 30(6):703–712

    Article  CAS  Google Scholar 

  • Spokas KA (2013) Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 5:165–176

    Article  CAS  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impact of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DA, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    Article  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, Macedo J, Blum WH, Zech W (2007) Long term effect of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Stockmann U, Adams MA et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99(5):1103–1110

    Article  CAS  Google Scholar 

  • Sun LY, Li L, Chen ZZ, Wang JY, Xiong ZQ (2014) Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Sci Plant Nutr 60:254–265

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR, Craigie RA (2011) Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual 40:468–476

    Article  CAS  Google Scholar 

  • Tammeorg P, Parviainen T, Nuutinen V, Simojoki A, Vaara E, Helenius J (2014) Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand. Agric Ecosyst Environ 191:150–157

    Article  CAS  Google Scholar 

  • Thammasom N, Vityakon P, Lawongsa P, Saenjan P (2016) Biochar and rice straw have different effects on soil productivity, greenhouse gas emission and carbon sequestration in Northeast Thailand paddy soil. Agric Nat Res 50:192–198

    CAS  Google Scholar 

  • Thies J, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biocharfor environmental management: science and technology. Earthscan, London, pp 85–105

    Google Scholar 

  • Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manage 129:62–68

    Article  CAS  Google Scholar 

  • Tian X, Li C, Zhang M, Wan Y, Xie Z, Chen B et al (2018) Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE 13(1):e0189924

    Article  CAS  Google Scholar 

  • Tiwari AP, Singh JS (2017) Plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res 8(7233):73–79

    CAS  Google Scholar 

  • Tong XJ, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172(2–3):828–834

    Article  CAS  Google Scholar 

  • Trigo C, Spokas KA, Cox L, Koskinen WC (2014) Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine. J Agric Food Chem 62(45):10855–10860

    Article  CAS  Google Scholar 

  • Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecolo Mono 18(1):81–115

    Article  CAS  Google Scholar 

  • Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238

    Article  CAS  Google Scholar 

  • Vaccari F, Maienza A, Miglietta F, Baronti S, Di Lonardo S, Giagnoni L, Lagomarsino A, Pozzi A, Pusceddu E, Ranieri R (2015) Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agric Ecosyst Environ 207:163–170

    Article  CAS  Google Scholar 

  • Van Zwieten L, Singh B, Joseph S, Kimber S, Cowie A, Chan KY (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management—science and technology. Earthscan, London, pp 227–249

    Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010a) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–224

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010b) Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res 48:555–568

    Article  CAS  Google Scholar 

  • Vimal SR, Singh JS (2019) Salt tolerant PGPR and FYM application in saline soil paddy agriculture sustainability. Clim Change Environ Sustain 7(1):23–33

    Google Scholar 

  • Vimal SR, Gupta J, Singh JS (2018) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res 9(1):1–14

    Article  CAS  Google Scholar 

  • Wakeel A (2013) Potassium–sodium interactions in soil and plant under saline-sodic conditions. J Plant Nutr Soil Sci 176:344–354

    Article  CAS  Google Scholar 

  • Wang JY, Pan XJ, Liu YL, Zhang XL, Xiong ZQ (2012) Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil 360(1–2):287–298

    Article  CAS  Google Scholar 

  • Wang Y, Wang Y-J, Wang L, Fang G-D, Cang L, Herath HMSK, Zhou D-M (2013a) Reducing the bioavailability of PCBs in soil to plant by biochars assessed with triolein-embedded cellulose acetate membrane technique. Environ Pollut 174:250–256

    Article  CAS  Google Scholar 

  • Wang D, Zhang W, Hao X, Zhou D (2013b) Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ Sci Technol 47:821–828

    Article  CAS  Google Scholar 

  • Wang C, Tu Q, Dong D, Strong PJ, Wang H, Sun B, Wu W (2014a) Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J Hazard Mater 280:409–416

    Article  CAS  Google Scholar 

  • Wang ZL, Li YF, Chang SX, Zhang JJ, Jiang PK, Zhou GM, Shen ZM (2014b) Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation. Biol Fertil Soils 50:1109–1119

    Article  CAS  Google Scholar 

  • Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016) CuO nanoparticle interaction with arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008–6016

    Article  CAS  Google Scholar 

  • Wang M, Zhu Y, Cheng L, Andserson B, Zhao X, Wang D et al (2018) Review on utilization of biochar for metal-contaminated soil and sediment remediation. J Environ Sci (China) 63:156–173

    Article  Google Scholar 

  • Wardle D, Zackrisson O, Nilsson M (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115(3):419–426

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629–629

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 59:264–278

    Article  CAS  Google Scholar 

  • Winsley P (2007) Biochar and bioenergy production for climate change mitigation. NZ Sci Rev 64:5–10

    Google Scholar 

  • Woldetsadik D, Drecshel P et al (2017) Effect of bio char derived from faecal matter on yield and nutrient content of Lettuce (Lactuca sativa) in two contrasting soils. Environ Syst Res 6(2). https://doi.org/10.1186/s40068-017-0082-9

  • Woolf D, Lehmann J (2012) Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111:83–95

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  CAS  Google Scholar 

  • World Health Organisation (2010) Persistent organic pollutants: impact on child health. WHO Document Production Services, Geneva

    Google Scholar 

  • Xiao YH (2016) Effects of different application rates of biochar on the soil greenhouse gas emission in Chinese chestnut stands. Master thesis, Zhejiang A and F University, Hangzhou, Zhejiang (in Chinese)

    Google Scholar 

  • Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52:5027–5047

    Article  CAS  Google Scholar 

  • Xu M, Lou Y, Sun X, Wang W, Baniyamuddin M, Zhao K (2011a) Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol Fertil Soils 47(7):745

    Article  CAS  Google Scholar 

  • Xu RK, Xiao SC, Yuan JH, Zhao AZ (2011b) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102(22):10293–10298

    Article  CAS  Google Scholar 

  • Xu G, Wei LL, Sun JN, Shao HB, Chang SX (2013) What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism. Ecol Eng 52:119–124

    Article  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut and soil chemical properties in south Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Yan XY, Yagi K, Akiyama H, Akimoto H (2005) Statistical analysis of the major variables controlling methane emission from rice fields. Glob Chang Biol 11:1131–1141

    Article  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effect of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yang Y, Lin X, Wei B, Zhao Y, Wang J (2014) Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. Int J Environ Sci Technol 11(4):1093–1100

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman AR et al (2012) Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater 209–210:408–413

    Article  CAS  Google Scholar 

  • Yip K, Xu M, Li CZ, Jiang SP, Wu H (2010) Biochar as a fuel: 3. Mechanistic understanding on biochar thermal annealing at mild temperatures and its effect on biochar reactivity. Energy Fuels 25(1):406–414

    Article  CAS  Google Scholar 

  • Yoo G, Kang H (2012) Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J Environ Qual 41:1193–1202

    Article  CAS  Google Scholar 

  • Yu LQ, Tang J, Zhang RD, Wu QH, Gong MM (2013) Effects of biochar application on soil methane emission at different soil moisture levels. Biol Fertil Soils 49:119–128

    Article  CAS  Google Scholar 

  • Yuan J, Meng J, Liang X, Yang E, Xu Y, Wenfu C (2017) Organic molecules from biochar leacheates have a positive effect on rice seedling cold tolerance. Front Plant Sci 8:1624

    Article  Google Scholar 

  • Yuan P, Wang J, Pan Y, Shen B, Wu C (2018) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ 659:473–490

    Article  CAS  Google Scholar 

  • Zhang AF, Cui LQ, Pan GX, Li LQ, Hussain Q, Zhang XH, Zheng JW, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zhang AF, Bian RJ, Pan GX, Cui LQ, Hussain Q, Li LQ, Zheng JW, Zheng JF, Zhang XH, Han XJ, Yu XY (2012a) Effect of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res 127:153–160

    Article  Google Scholar 

  • Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X (2012b) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012c) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32

    Article  CAS  Google Scholar 

  • Zhelezova A, Cederlund H, Stenström J (2017) Effect of biochar amendment and ageing on adsorption and degradation of two herbicides. Water Air Soil Pollut 228(6):216

    Article  CAS  Google Scholar 

  • Zhou Q, Song Y (2004) Contaminated soil remediation: principles and methods. Science Press, Beijing

    Google Scholar 

  • Zhou JB, Deng CJ, Chen JL, Zhang QS (2008) Remediation effects of cotton stalk carbon on cadmium(Cd) contaminated soil. Ecol Environ 17:1857–1860

    Google Scholar 

  • Zhou GY, Zhou XH, Zhang T, Du ZG, He YH, Wang XH, Shao JJ, Cao Y, Xue SG, Wang HL, Xu CY (2017) Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. Forest Ecol Manage 405:339–349

    Article  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

  • Zwart DC, Kim SH (2012) Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. Hort Sci 47:1736–1740

    Article  Google Scholar 

  • Zwieten VL, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borah, P., Baruah, N., Gogoi, L., Borkotoki, B., Gogoi, N., Kataki, R. (2020). Biochar: A New Environmental Paradigm in Management of Agricultural Soils and Mitigation of GHG Emission. In: Singh, J., Singh, C. (eds) Biochar Applications in Agriculture and Environment Management. Springer, Cham. https://doi.org/10.1007/978-3-030-40997-5_11

Download citation

Publish with us

Policies and ethics