Skip to main content

Utilization of Agricultural Waste as Biochar for Soil Health

  • Chapter
  • First Online:
Biochar Applications in Agriculture and Environment Management

Abstract

The utilization of agricultural wastes are considered to be the important step in environmental protection, energy structure and agricultural development. The agricultural straw disposition of agricultural wastes not only results in environmental pollution, but also waste a lot of valuable biomass resources. Biochar the viable organic amendment product derived from organic sources and store carbon on a long term basis in the terrestrial ecosystem and also capable of reducing greenhouse gases (GHG) emission from soil to the atmosphere to combat climate change and sustain the soil health with sustainable crop production. The role of biochar in developing a sustainable agriculture production system is immense and so is its potential in mitigating climate change, which stands much beyond its uses in agriculture. The addition of biochar to soils resulted, on average, in increased above ground productivity, crop yield, soil microbial biomass, rhizobia nodulation, plant K tissue concentration, soil phosphorus (P), soil potassium (K), total soil nitrogen (N), and total soil carbon (C). The effects of biochar on multiple ecosystem functions and the central tendencies suggest that biochar holds promise in being a win-win-win solution to energy, carbon storage, and ecosystem function. However, biochar’s impacts on a fourth component, the downstream non target environments, remain unknown and present a critical research gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agamuthu P (2009) Challenges and opportunities in Agrowaste management: an Asian perspective. Inaugural meeting of First Regional 3R Forum in Asia 11–12 Nov., Tokyo, Japan

    Google Scholar 

  • Ameloot N, Neve SD, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem 57:401–410

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar – production and properties. Bioresour Technol 102(2):1886–1891

    Article  CAS  Google Scholar 

  • Bolan NS, Kunhikrishnan A, Choppala GK, Thangarajan R, Chung JW (2012) Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Sci Total Environ 424:264–270

    Article  CAS  Google Scholar 

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57:539–546

    Article  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101(14):5222–5228

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green waste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chidumayo EN (1994) Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, Zambia. For Ecol Manag 70:353–357

    Article  Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39(4):1218–1223

    Article  CAS  Google Scholar 

  • Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895

    Article  CAS  Google Scholar 

  • Deal C, Brewer CE, Brown RC, Okure MAE, Amoding A (2012) Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenergy 37:161–168

    Article  CAS  Google Scholar 

  • Denyes MJ, Rutter A, Zeeb BA (2013) In situ application of activated carbon and biochar to PCB- contaminated soil and the effects of mixing regime. Environ Pollut 182:201–208

    Article  CAS  Google Scholar 

  • Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 31:426–432

    Article  CAS  Google Scholar 

  • Gadde B, Menke C, Wassmann R (2009) Rice straw as a renewable energy source in India, Thailand and the Philippines, overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenergy 33:1532–1546

    Article  CAS  Google Scholar 

  • Galinato SP, Yoder JK, Granatstein D (2011) The economic value of biochar in crop production and carbon sequestration. Energy Policy 39(10):6344–6350

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal -a review. Biol Fertil Soils 35(4):219–230

    Article  CAS  Google Scholar 

  • Gundale MJ, Deluca TH, Nordin A (2011) Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob Chang Biol 17(8):2743–2753

    Article  Google Scholar 

  • Holt-Giménez E (2002) Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agric Ecosyst Environ 93(1–3):87–105

    Article  Google Scholar 

  • Hosonuma N, Herold M, De Sy V, De Fries RS, Brockhaus M, Verchot L, Angelsen A, Romijn E (2012) An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett 7(4):044009

    Article  Google Scholar 

  • Hutchinson JJ, Campbell CA, Desjardins RL (2007) Some perspectives on carbon sequestration in agriculture. Agric Forest Meteorol 142(2–4):288–302

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ippolito JA, Novak JM, Busscher WJ, Ahmedna M, Rehrah D, Watts DW (2012) Switch grass biochar affects two aridisols. J Environ Qual 41:1123–1130

    Article  CAS  Google Scholar 

  • Iswaran V, Jauhri KS, Sen A (1980) Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191–192

    Article  Google Scholar 

  • Janus A, Elie A, Ene P, Heymans S, Deboffe C, Douay F, Waterlot C (2015) Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthusbiochars. J Environ Manag 162:275–289

    Article  CAS  Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. Int Achiev Future 5:12–23

    Google Scholar 

  • Klein R, Schipper L, Dessai S (2005) Integrating mitigation and adaptation into climate and development policy: three research questions. Environ Sci Pol 8(6):579–588

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA et al (eds) Prospects of renewable bioprocessing in future energy systems, Biofuel and biorefinery technologies, vol 10. Springer, Cham, pp 1–50

    Chapter  Google Scholar 

  • Krull E, Lyons S (2009) What is biochar? ABC Science, viewed 26th April 2010

    Google Scholar 

  • Kwapinski W, Byrne CMP, Kryachko E, Wolfram P, Adley C, Leahy JJ, Novotny EH, Hayes MHB (2010) Biochar from biomass and waste. Waste Biomass Valoriz 1:177–189

    Article  CAS  Google Scholar 

  • Laird DA, Fleming PD, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impact on global climate change and good security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience 60:708–721

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Lehmann J, Kern DC, German LA, McCann J, Martins GC, Moreira A (2003) Soil fertility and production potential. Amazonian dark earths: origin, properties, management. Kluwer Academic Publishers, Dordrecht, pp 105–124

    Book  Google Scholar 

  • Liang B, Lehmann J, Sohi SP et al (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379

    Article  Google Scholar 

  • Marris E (2006) Putting the carbon back: black is the new green. Nature 442:624–626

    Article  CAS  Google Scholar 

  • Masiello CA, Druffel ERM (1998) Black carbon in deep-sea sediments. Science 280:1911–1913

    Article  CAS  Google Scholar 

  • McHenry MP (2009) Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty and risk. Agric Ecosyst Environ 129(1–3):1–7

    Article  CAS  Google Scholar 

  • Méndez A, Gomez A, Paz-Ferreiro J, Gasco G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89:1354–1359

    Article  CAS  Google Scholar 

  • Morgan JA, Follett RF, Allen LH, Del Grosso S, Derner JD, Dijkstra F, Schoeneberger MM (2010) Carbon sequestration in agricultural lands of the United States. J Soil Water Conserv 65(1):6A–13A

    Article  Google Scholar 

  • Nelissen V, Rütting T, Huygen D, Staelens J, Ruysschaerta G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853

    Article  CAS  Google Scholar 

  • Oguntunde P, Fosu M, Ajayi A, Giesen N (2004) Effect of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39:295–299

    Article  CAS  Google Scholar 

  • Pessenda LCR, Gouveia SEM, Aravena R (2001) Radiocarbon dating of total soil organic matter and humin fraction and its comparison with C-14 ages of fossil charcoal. Radiocarbon 43:595–601

    Article  CAS  Google Scholar 

  • Pietikäinen J, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Plaster EJ (2009) Soil science and management, 5th edn. Delmar Cengage learning

    Google Scholar 

  • Robertson SJ (2012) Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Can J Soil Sci 92(2):329–340

    Article  CAS  Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Elsevier Inc, p 532

    Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cycles 14:777–793

    Article  CAS  Google Scholar 

  • Schouten S, Van Groenigen JW, Oenema O, Cayuela ML (2012) Bioenergy from cattle manure? Implications of anaerobic digestion and subsequent pyrolysis for carbon and nitrogen dynamics in soil. Glob Chang Biol Bioenerg 4:751–760

    Article  CAS  Google Scholar 

  • Scialabba N, Muller-Lindenlauf M (2010) Organic agriculture and climate change. Renew Agric Food Syst 25(2):158–169

    Article  Google Scholar 

  • Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol-2: managing environmental pollution. Springer, Cham, pp 123–146

    Chapter  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017b) Impact of rice husk biochar on nitrogen mineralization and methanotrophs community dynamics in paddy soil. Int J Pure Appl Biosci 5(5):428–435

    Article  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017c) Application of biochar in soil fertility and environmental management: a review. Bull Environ Pharmacol Life Sci 6(12):07–14

    CAS  Google Scholar 

  • Singh C, Tiwari S, Gupta VK, Singh JS (2018) The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. Catena 171:485–493

    Article  CAS  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2019) Biochar: a sustainable tool in soil 2 pollutant bioremediation. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Cham, pp 475–494

    Google Scholar 

  • Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Chang Biol 22:1315–1324

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Sirotenko OP (2007) Agriculture: mitigation, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 497–540

    Google Scholar 

  • Sohi SP (2012) Carbon storage with benefits. Science 338:1034–1035

    Article  CAS  Google Scholar 

  • Spokas KA, Novak JM, Venterea RT (2011) Biochar’s role as an alternative N-fertilizer: ammonia capture NH3. Plant Soil 350:35–42

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291(1–2):275–290

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsolamended with compost and charcoal. J Plant Nutr Soil Sci 171(6):893–899

    Article  CAS  Google Scholar 

  • Streets D, Yarber K, Woo J, Carmichael G (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Glob Biogeochem Cycles 17(4):1099

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM (2011) Biochar adsorbed ammonia is bioavailable. Plant Soil 350:57–69

    Article  CAS  Google Scholar 

  • The Norwegian Environment Agency (2017) Environment.no. At http://www.environment.no/topics/hazardous-chemicals/contaminated-soil. Accessed Sept 2017

  • Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Tim Lenton (2009). http://climatechangepsychology.blogspot.com/2009/03/chris-goodalljohanneslehmanntim.htm

  • Tiwari S, Singh C, Singh JS (2018) Land use changes: a key ecological driver regulating methanotrophs abundance in upland soils. Energ Ecol Environ 3(6):355–371

    Article  Google Scholar 

  • Tiwari S, Singh C, Boudh S, Rai PK, Gupta VK, Singh JS (2019a) Land use change: a key ecological disturbance declines soil microbial biomass in dry tropical uplands. J Environ Manag 242:1–10

    Article  CAS  Google Scholar 

  • Tiwari S, Singh C, Singh JS (2019b) Wetlands: a major natural source responsible for methane emission. In: Upadhyay et al (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Cham, pp 59–74

    Google Scholar 

  • Tubiello FN (2015) The contribution of agriculture forestry and other land use activities to global warming, 1990–2012. Glob Chang Biol 21:2655–2660

    Article  Google Scholar 

  • Uchimiya M, Wartelle LH, Lima IM, Klasson KT (2010) Sorption of deisopropylatrazine on broiler litter biochars. J Agric Food Chem 58:12350–12356

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Venkataraman C, Habib G, Kadamba D, Shrivastava M, Leon J, Crouzille B, Boucher O, Streets D (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution moderate resolution imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob Biogeochem Cycles 20(2):GB2013

    Article  CAS  Google Scholar 

  • Wang J, Zhang M, Xiong Z, Liu P, Pan G (2011) Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol Fertil Soils 47:887–896

    Article  CAS  Google Scholar 

  • Wang T, Camps Arbestain M, Hedley M, Bishop P (2012) Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org Geochem 51:45–54

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629–630

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effect of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag 27:110–115

    Article  Google Scholar 

  • Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy 44 metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author grateful to the authorities of Shri Nehru MahaVidyalaya college of Arts and Science college, Coimbatore, Tamil Nadu, India for the use of research facilities and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajalakshmi, A.G. (2020). Utilization of Agricultural Waste as Biochar for Soil Health. In: Singh, J., Singh, C. (eds) Biochar Applications in Agriculture and Environment Management. Springer, Cham. https://doi.org/10.1007/978-3-030-40997-5_10

Download citation

Publish with us

Policies and ethics