Skip to main content

Cancer Cell Prediction Using Machine Learning and Evolutionary Algorithms

  • Chapter
  • First Online:
Applications of Hybrid Metaheuristic Algorithms for Image Processing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 890))

  • 575 Accesses

Abstract

Cancer is a disease that affects the global population indistinctly. It is considered the second cause of death in the world. Early detection can reduce cancer mortality. However, instruments and equipment for diagnostic are often expensive and insufficient. This makes doctor’s work becomes complex and often, cancer patients do not receive a diagnosis until the disease is advanced. Machine Learning (ML) has shown to be useful for classification and prediction problems but it faces some limitations. Mainly, because it depends on the quality of the information. Over the years, different mechanisms have been developed to solve them, but there is not any mechanism that eliminates all ML difficulties. Because of that, this area remains open to new promising discoveries and ideas. Evolutionary Algorithms (EAs) have demonstrated to be useful for solving optimization problems in a heuristic way. This chapter presents a comparative study related to the prediction of cancer cells based on Machine Learning and Evolutionary Algorithms. As well as, a brief introduction of machine learning and evolutionary technics is presented. Also, the procedures’ implementation and performance are described. The results obtained show that the AEs can support a ML method, guiding the learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Plummer, C. de Martel, J. Vignat, J. Ferlay, F. Bray, S. Franceschi, Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Heal. 4(9), e609–e616 (2016)

    Article  Google Scholar 

  2. Estadísticas del cáncer—National Cancer Institute (2018). https://www.cancer.gov/espanol/cancer/naturaleza/estadisticas. Accessed 09 May 2019

  3. P. Ponce Cruz, Inteligencia Artificial con Aplicaciones a la Ingeniería (Mexico, DF, Alfaomega, 2010)

    Google Scholar 

  4. M. Paluszek, S. Thomas, MATLAB Machine Learning (2016)

    Google Scholar 

  5. D. Kaladhar, B. Chandana, P. Kumar, Predicting cancer survivability using classification algorithms. Int. J. Res. Rev. Comput. Sci. 2(2), 340–343 (2011)

    Google Scholar 

  6. J.A. Cruz, D.S. Wishart, Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59–77 (2006)

    Article  Google Scholar 

  7. A. Raad, A. Kalakech, M. Ayache, in The 13th International Arab Conference on Information Technology ACIT Breast Cancer Classification Using Neural Network Approach: MLP and RBF, 10–13 Dec 2012, p. 15–19

    Google Scholar 

  8. D. Fehr et al., Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. 112(46), E6265–E6273 (2015)

    Article  Google Scholar 

  9. B.M. Wise. J.M. Shaver, in Detection of Cervical Cancer from Evoked Tissue Fluorescence Images Using 2- and 3-Way Methods, vol. 1087210 (2019), p. 35

    Google Scholar 

  10. M.Z. Alom, C. Yakopcic, M.S. Nasrin, T.M. Taha, V.K. Asari, Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J. Digit. Imaging (2019)

    Google Scholar 

  11. A.W. Mohamed, A novel differential evolution algorithm for solving constrained engineering optimization problems. J. Intell. Manuf. 29(3), 659–692 (2018)

    Article  Google Scholar 

  12. P. Díaz, M. Pérez-Cisneros, E. Cuevas, O. Camarena, F.A.F. Martinez, A. González, A swarm approach for improving voltage profiles and reduce power loss on electrical distribution networks. IEEE Access 6, 49498–49512 (2018)

    Article  Google Scholar 

  13. K.G. Dhal, S. Das, A dynamically adapted and weighted bat algorithm in image enhancement domain. Evol. Syst. 10(2), 129–147 (2018)

    Article  Google Scholar 

  14. K.G. Dhal, A. Das, S. Ray, J. Gálvez, S. Das, Nature-Inspired Optimization Algorithms and Their Application in Multi-thresholding Image Segmentation. No. 0123456789 (Springer, Netherlands, 2019)

    Google Scholar 

  15. T. Bui, S.D. Stoller, J. Li, Greedy and evolutionary algorithms for mining relationship-based access control policies. Comput. Secur. 80, 317–333 (2019)

    Article  Google Scholar 

  16. H. Yoshida, D. Azuma, Y. Fukuyama, Dependable parallel canonical differential evolutionary particle swarm optimization for voltage and reactive power control. IFAC-PapersOnLine 51(28), 167–172 (2018)

    Article  Google Scholar 

  17. P. Kim, MATLAB Deep Learning. With Machine Learning, Neuronal Networks And Artificial Intelligence (2017)

    Google Scholar 

  18. N.J. Nilsson, Introduction to Machine Learning an Early Draft of Proposed Textbook (2005)

    Google Scholar 

  19. G. Englebienne, Machine Learning Pattern Recognition Lecture Notes (2013)

    Google Scholar 

  20. R.E. Bello Peréz, Z.Z. García Valdivia, M.M. García Lorenzo, A. Reynoso Lobato, Aplicaciones de la inteligencia artificial. México (2002)

    Google Scholar 

  21. S. Chatterjee, A.S. Hadi, Regression Analysis by Example, 5th edn. (2012)

    Google Scholar 

  22. M.C. Carollo, Regresión lineal simple (2011), p. 1–31

    Google Scholar 

  23. D.C. Mongomery, E.A. Peak, G.G. Vining, Introducción al analisis de regresión lineal (Grupo Editorial Patria, México, 2011)

    Google Scholar 

  24. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Australas. Plant Pathol. 38(3), 284–287 (1995)

    MATH  Google Scholar 

  25. E.V. Cuevas, J.V. Osuna, D.A. Oliva, M.A. Diaz, OPTIMIZACIÓN. Algoritmos programados con MATLAB (Alfaomega, Ciudad de México, 2016)

    Google Scholar 

  26. A.K. Qin, P.N. Suganthan, in Self-adaptive Differential Evolution Algorithm for Numerical Optimization (2005), p. 1785–1791

    Google Scholar 

  27. S. Das, A. Abraham, A. Konar, Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man, Cybern.—Part A Syst. Humans 38(1), 218–237 (2007)

    Google Scholar 

  28. J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm. Soft. Comput. 9(6), 448–462 (2005)

    Article  Google Scholar 

  29. J. Kennedy, R. Eberhart, B. Gov, Particle swarm optimization. Encycl. Mach. Learn. 760–766 (1995)

    Google Scholar 

  30. X.-S. Yang, Engineering Optimization. An Introduction with Metaheuristic Applications (Wiley, United States of America, 2010)

    Book  Google Scholar 

  31. M. Pluhacek, A. Viktorin, R. Senkerik, T. Kadavy, I. Zelinka, Extended experimental study on PSO with partial population restart based on complex network analysis. Log. J. IGPL (2018)

    Google Scholar 

  32. N.P. Holden, A.A. Freitas, A Hybrid PSO/ACO Algorithm for Classification (2007), p. 2745

    Google Scholar 

  33. A. Modiri, K. Kiasaleh, Modification of real-number and binary PSO algorithms for accelerated convergence. IEEE Trans. Antennas Propag. 59(1), 214–224 (2011)

    Article  Google Scholar 

  34. H. Fan, A modification to particle swarm optimization algorithm. Eng. Comput. 19(7–8), 970–989

    Google Scholar 

  35. D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization (Kayseri Turkey, 2005)

    Google Scholar 

  36. X.-S. Yang, Flower pollination algorithm for global optimization, in Unconventional Computation and Natural Computation (2012), p. 240–249

    Google Scholar 

  37. J. Gálvez, E. Cuevas, O. Avalos, Flower pollination algorithm for multimodal optimization. Int. J. Comput. Intell. Syst. 10(1), 627 (2017)

    Article  Google Scholar 

  38. R. Salgotra, U. Singh, A novel bat flower pollination algorithm for synthesis of linear antenna arrays. Neural Comput. Appl. 30(7), 2269–2282 (2018)

    Article  Google Scholar 

  39. J. Senthilnath, S. Kulkarni, S. Suresh, X.S. Yang, J.A. Benediktsson, FPA clust: evaluation of the flower pollination algorithm for data clustering. Evol. Intell. (0123456789) (2019)

    Google Scholar 

  40. X. Yang, Nature-Inspired Algorithms and Applied Optimization, vol. 744 (2018)

    Google Scholar 

  41. X.S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  42. M. Abdel-Basset, L.A. Shawky, Flower pollination algorithm: a comprehensive review. Artif. Intell. Rev. 1–25 (2018)

    Google Scholar 

  43. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. (Ny) 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  44. W.H. Wolberg, UCI Machine Learning Repository: Breast Cancer Wisconsin (Original) Data Set (1992)

    Google Scholar 

  45. E. Yuan, Logistic Regression (2014). http://eric-yuan.me/logistic-regression/. Accessed 28 May 2019

  46. D. Oliva, Studies in Computational Intelligence 825 Metaheuristic Algorithms for Image Segmentation : Theory and Applications

    Google Scholar 

  47. Y. Zheng, J. Qu, Y. Zhou, An improved PSO clustering algorithm based on affinity propagation 2 an overview of particle swarm optimization. 12(9), 447–456 (2013)

    Google Scholar 

  48. M.R. Alrashidi, S. Member, A survey of particle swarm optimization applications in electric power systems. 13(4), 913–918 (2009)

    Google Scholar 

  49. H. Iba, Evolutionary Approach to Machine Learning and Deep Neural Networks (2018)

    Google Scholar 

  50. V. Torra, Y. Narukawa, Y. Yoshida, Modeling Decisions for Artificial Intelligence (Berlin, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Avila-Cardenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avila-Cardenas, K., Pérez-Cisneros, M. (2020). Cancer Cell Prediction Using Machine Learning and Evolutionary Algorithms. In: Oliva, D., Hinojosa, S. (eds) Applications of Hybrid Metaheuristic Algorithms for Image Processing. Studies in Computational Intelligence, vol 890. Springer, Cham. https://doi.org/10.1007/978-3-030-40977-7_16

Download citation

Publish with us

Policies and ethics