Skip to main content

Active Contour Model in Deep Learning Era: A Revise and Review

  • Chapter
  • First Online:
Applications of Hybrid Metaheuristic Algorithms for Image Processing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 890))

Abstract

Active Contour (AC)-based segmentation has been widely used to solve many image processing problems, specially image segmentation. While these AC-based methods offer object shape constraints, they typically look for strong edges or statistical modeling for successful segmentation. Clearly, AC-based approaches lack a way to work with labeled images in a supervised machine learning framework. Furthermore, they are unsupervised approaches and strongly depend on many parameters which are chosen by empirical results. Recently, Deep Learning (DL) has become the go-to method for solving many problems in various areas. Over the past decade, DL has achieved remarkable success in various artificial intelligence research areas. DL is supervised methods and requires large volume ground-truth. This paper first provides a fundamental of both Active Contour techniques and Deep Learning framework. We then present the state-of-the-art approaches of Active Contour techniques incorporating in Deep Learning framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Samson, L. Blanc-Feraud, G. Aubert, J. Zerubia, A level set model for image classification. Int. J. Comput. Vision (IJCV) 40(3), 187–197 (2000)

    MATH  Google Scholar 

  2. T. Brox, J. Weickert, Level set segmentation with multiple regions. IEEE Trans. Image Process. 15(10), 32133218 (2006)

    Google Scholar 

  3. E. Bae, X.-C. Tai, Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation, in 2nd International Conference on Scale Space and Variational Methods in Computer Vision, pp. 1–13 (2009)

    Google Scholar 

  4. C. Li, C. Xu, C. Gui, M.D. Fox, Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    MathSciNet  MATH  Google Scholar 

  5. C. Li, R. Huang, Z. Ding, C. Gatenby, D.N. Metaxas, J.C. Gore, A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    MathSciNet  MATH  Google Scholar 

  6. B. Lucas, M. Kazhdan, R. Taylor, Multi-object spring level sets (muscle), in 15th International Conference on Medical Image Computing Computed-Assisted Intervention, pp. 495–503 (2012)

    Google Scholar 

  7. T.H.N. Le, K. Luu, M. Savvides, Sparcles: dynamic l1 sparse classifiers with level sets for robust beard/moustache detection and segmentation. IEEE Trans. Image Process. 22(8), 3097–3107 (2013)

    Google Scholar 

  8. Q. Huang, X. Bai, Y. Li, L. Jin, X. Li, Optimized graph-based segmentation for ultrasound images. Neurocomputing 129, 216–224 (2014)

    Google Scholar 

  9. J. Li, M. Luong, D. Jurafsky, A hierarchical neural autoencoder for paragraphs and documents. arXiv preprint arXiv:1506.01057 (2015)

  10. S. Mukherjee, S. Acton, Region based segmentation in presence of intensity inhomogeneity using legendre polynomials. IEEE Signal Process. Lett. 22(3), 298–302 (2015)

    Google Scholar 

  11. T.H.N. Le, M. Savvides, A novel shape constrained feature-based active contour (SC-FAC) model for lips/mouth segmentationin the wild. Pattern Recogn. 54, 23–33 (2016)

    Google Scholar 

  12. J. Shen, Y. Du, X. Li, Interactive segmentation using constrained laplacian optimization. IEEE Trans. Circuits Syst. Video Tech. 24(7), 1088–1100 (2014)

    Google Scholar 

  13. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vision (IJCV) 1(4), 321–331 (1988)

    MATH  Google Scholar 

  14. V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. Int. J. Comput. Vision (IJCV) 22, 61–79 (1997)

    MATH  Google Scholar 

  15. C. Li, C. Xu, C. Gui, M. Fox, Level set evolution without reinitialization: a new variational formulation, in CVPR, pp. 430–436 (2005)

    Google Scholar 

  16. N. Paragios, R. Deriche, Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vision (IJCV) 46, 223–247 (2002)

    MATH  Google Scholar 

  17. T.F. Chan, L.A. Vese, Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    MATH  Google Scholar 

  18. J. Lie, M. Lysaker, X. Tai, A binary level set model and some application to Mumford Shah image segmentation. IEEE Trans. Image Process. pp. 1171–1181 (2010)

    Google Scholar 

  19. D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    MathSciNet  MATH  Google Scholar 

  20. L.A. Vese, T.F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision (IJCV) 50 (2002)

    Google Scholar 

  21. C. Li, C. Kao, J. Gore, Z. Ding, Implicit active contours driven by local binary fitting energy, in CVPR, pp. 1–7 (2007)

    Google Scholar 

  22. C. Li, C.-Y. Kao, J.C. Gore, Z. Ding, Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. (2008)

    Google Scholar 

  23. K. Zhang, H. Song, L. Zhang, Active contours driven by local image fitting energy. Pattern Recogn. 43(4), 1199–1206 (2010)

    MATH  Google Scholar 

  24. L. Wang, C. Pan, Robust level set image segmentation via a local correntropy-based k-means clustering. Pattern Recogn. 47(5), 1917–1925 (2014)

    Google Scholar 

  25. Y. Han, W. Wang, X. Feng, A new fast multiphase image segmentation algorithm based on non-convex regularizer. Pattern Recogn. 45(1), 363–372 (2012)

    MATH  Google Scholar 

  26. S. Liu, Y. Peng, A local region-based chan-vese model for image segmentation. Pattern Recogn. 45(7), 2769–2779 (2012)

    MATH  Google Scholar 

  27. Y. Wang, S. Xiang, C. Pan, L. Wang, G. Meng, Level set evolution with locally linear classification for image segmentation. Pattern Recogn. 46(6), 1734–1746 (2013)

    MATH  Google Scholar 

  28. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in CVPR (2015)

    Google Scholar 

  29. S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P. Torr, Conditional random fields as recurrent neural networks, in ICCV (2015)

    Google Scholar 

  30. T.N. Le, C. Zhu, Y. Zheng, K. Luu, M. Savvides, Robust hand detection in vehicles, in ICPR, pp. 573–578 (2016)

    Google Scholar 

  31. T.N. Le, Y. Zheng, C. Zhu, K. Luu, M. Savvides, Multiple scale FasterRCNN approach to drivers cell-phone usage and hands on steering wheel detection, in CVPRW, pp. 46–53 (June 2016)

    Google Scholar 

  32. K. Luu, C.C. Zhu, C. Bhagavatula, T.N. Le, M. Savvide, A deep learning approach to joint face detection and segmentation, in Advances in Face Detection and Facial Image Analysis, ed. by M. Kawulok, M. Celebi, B. Smolka (Springer, Cham, 2016)

    Google Scholar 

  33. Y. Zheng, C. Zhu, K. Luu, C. Bhagavatula, T.N. Le, M. Savvides, Towards a deep learning framework for unconstrained face detection, in IEEE 8th International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8 (2016)

    Google Scholar 

  34. T.N. Le, K. Luu, C. Zhu, M. Savvides, Semi self-training beard/moustache detection and segmentation simultaneously. Image Vision Comput. 58, 214–223 (2017)

    Google Scholar 

  35. T.N. Le, C. Zhu, Y. Zheng, K. Luu, M. Savvides, Deepsafedrive: a grammar-aware driver parsing approach to driver behavioral situational awareness (DB-SAW). Pattern Recogn. 66, 229–238 (2017)

    Google Scholar 

  36. V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Google Scholar 

  37. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. Comput. Vision Pattern Recogn. 40(4), 834–848 (2018)

    Google Scholar 

  38. P.O. Pinheiro, R. Collobert, P. Dollár, Learning to segment object candidates, in NIPS (2015)

    Google Scholar 

  39. H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  40. Y. Li, H. Qi, J. Dai, X. Ji, Y. Wei, Fully convolutional instance-aware semantic segmentation, in CVPR, pp. 2359–2367 (2017)

    Google Scholar 

  41. H. Wu, V.V. Appia, A.J. Yezzi, Numerical conditioning problems and solutions for nonparametric i.i.d. statistical active contours. IEEE Trans. Software Eng. 35(6), 1298–1311 (2013)

    Google Scholar 

  42. Y. Shi, W.C. Karl, Real-time tracking using level sets 2, 34–41 (2005)

    Google Scholar 

  43. A. Dubrovina, G. Rosman, R. Kimmel, Multi-region active contours with a single level set function. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1585–1601 (2015)

    Google Scholar 

  44. K. Zhang, Q. Liu, H. Song, X. Li, A variational approach to simultaneous image segmentation and bias correction. IEEE Trans. Cybernetics 45(8), 1426–1437 (2015)

    Google Scholar 

  45. T.H.N. Le, M. Savvides, A novel shape constrained feature-based active contour model for lips/mouth segmentation in the wild. Pattern Recogn. 54, 23–33 (2016)

    Google Scholar 

  46. H. Zhou, X. Li, G. Schaefer, M.E. Celebi, P.C. Miller, Comput. Vision Image Underst. 117(9), 1004–1016 (2013)

    Google Scholar 

  47. T.F. Chan, S. Esedoglu, M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. (Technical Report) (2006)

    Google Scholar 

  48. J. Weickert, B.M.T.H. Romeny, M.A. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)

    Google Scholar 

  49. Y. LeCun, D. Touresky, G. Hinton, T. Sejnowski, A theoretical framework for back-propagation, in Proceedings of the 1988 Connectionist Models Summer School (Morgan Kaufmann, CMU, Pittsburgh, PA, 1988), pp. 21–28

    Google Scholar 

  50. Y. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient backprop, in Neural networks: Tricks of the Trade, pp. 9–50 (Springer, Berlin, 1998)

    Google Scholar 

  51. D.T. Nguyen, W. Li, P.O. Ogunbona, Human detection from images and videos: a survey. Pattern Recogn. 51, 148–175 (2016)

    Google Scholar 

  52. J.R. Uijlings, K.E. Van De Sande, T. Gevers, A.W. Smeulders, Selective search for object recognition. Int. J. Comput. Vision (IJCV) 104(2), 154–171 (2013)

    Google Scholar 

  53. R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in CVPR, pp. 580–587 (2014)

    Google Scholar 

  54. K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Google Scholar 

  55. S. Ren, K. He, R.B. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  56. J. Dai, K. He, J. Sun, Instance-fully convolutional instance-aware semantic segmentation via multi-task network cascades, in CVPR (2016)

    Google Scholar 

  57. K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in ECCV (2016)

    Google Scholar 

  58. T.H.N. Le, K.G. Quach, K. Luu, C.N. Duong, M. Savvides, Reformulating level sets as deep recurrent neural network approach to semantic segmentation. Comput. Vision Pattern Recogn. 27(5), 2393–2407 (2018)

    MathSciNet  Google Scholar 

  59. T.H.N. Le, R. Gummadi, M. Savvides, Deep recurrent level set for segmenting brain tumors, in MICCAI, pp. 646–653 (2018)

    Google Scholar 

  60. T.H.N. Le, C.N. Duong, L. Han, K. Luu, K.G. Quach, M. Savvides, Deep contextual recurrent residual networks for scene labeling. Pattern Recogn. 80, 32–41 (2018)

    Google Scholar 

  61. M. Egmont-Petersen, D. de Ridder, H. Handels, Image processing with neural networks: a review. Pattern Recogn. 35(10), 2279–2301 (2002)

    MATH  Google Scholar 

  62. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., Imagenet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015)

    MathSciNet  Google Scholar 

  63. A.-M. Tousch, S. Herbin, J.-Y. Audibert, Semantic hierarchies for image annotation: a survey. Pattern Recogn. 45(1), 333–345 (2012)

    Google Scholar 

  64. J. Fan, W. Xu, Y. Wu, Y. Gong, Human tracking using convolutional neural networks. IEEE Trans. Neural Networks 21(10), 1610–1623 (2010)

    Google Scholar 

  65. L. Wang, H. Lu, X. Ruan, M.-H. Yang, Deep networks for saliency detection via local estimation and global search, in CVPR (IEEE, New York, 2015), pp. 3183–3192

    Google Scholar 

  66. G. Li, Y. Yu, Visual saliency based on multiscale deep features. arXiv preprint arXiv:1503.08663 (2015)

  67. M. Patacchiola, A. Cangelosi, Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods. Pattern Recogn. 71, 132–143 (2017)

    Google Scholar 

  68. G. Gkioxari, R. Girshick, J. Malik, Contextual action recognition with R * CNN, in ICCVn, pp. 1080–1088 (2015)

    Google Scholar 

  69. J. Zhang, W. Li, P.O. Ogunbona, P. Wang, C. Tang, Rgb-d-based action recognition datasets: a survey. Pattern Recogn. 60, 86–105 (2016)

    Google Scholar 

  70. H. Xu, F. Su, Robust seed localization and growing with deep convolutional features for scene text detection, in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (ACM, New York, 2015), pp. 387–394

    Google Scholar 

  71. M. Jaderberg, A. Vedaldi, A. Zisserman, Deep features for text spotting, in ECCV (Springer, Berlin, 2014), pp. 512–528

    Google Scholar 

  72. D. Yu, W. Xiong, J. Droppo, A. Stolcke, G. Ye, J. Li, G. Zweig, Deep convolutional neural networks with layer-wise context expansion and attention, in Interspeech, pp. 17–21 (2016)

    Google Scholar 

  73. L.-H. Chen, T. Raitio, C. Valentini-Botinhao, J. Yamagishi, Z.-H. Ling, DNN-based stochastic postfilter for hmm-based speech synthesis, in Interspeech, pp. 1954–1958 (2014)

    Google Scholar 

  74. M.I. Jordan, Artificial neural networks, in Attractor Dynamics and Parallelism in a Connectionist Sequential Machine, pp. 112–127 (1990)

    Google Scholar 

  75. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Neurocomputing: foundations of research, in Learning Representations by Back-propagating Errors (MIT Press, Cambridge, MA, 1988), pp. 696–699

    Google Scholar 

  76. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Google Scholar 

  77. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  78. K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  79. T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, S. Khudanpur, Extensions of recurrent neural network language model, in ICASSP, pp. 5528–5531 (2011)

    Google Scholar 

  80. A. Graves, A. Mohamed, G.E. Hinton, Speech recognition with deep recurrent neural networks. arXiv preprint arXiv:1303.5778 (2013)

  81. J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention based models for speech recognition. arXiv preprint arXiv:1506.07503 (2015)

  82. N. Kalchbrenner, P. Blunsom, Recurrent continuous translation models (Association for Computational Linguistics, October 2013)

    Google Scholar 

  83. T. Luong, I. Sutskever, Q.V. Le, O. Vinyals, W. Zaremba, Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206 (2014)

  84. F. Hill, A. Bordes, S. Chopra, J. Weston, The goldilocks principle: reading children’s books with explicit memory representations. arXiv preprint arXiv:1511.02301 (2015)

  85. J. Mao, W. Xu, Y. Yang, J. Wang, A.L. Yuille, Deep captioning with multimodal recurrent neural networks (M-RNN). arXiv preprint arXiv:1412.6632 (2014)

  86. J. Donahue, L.A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, T. Darrell, Long-term recurrent convolutional networks for visual recognition and description. arXiv preprint arXiv:1411.4389 (2014)

  87. D. Vilariño, V. Brea, D. Cabello, X. Pardo, Discrete-time CNN for image segmentation by active contours. Pattern Recogn. Lett. 19, 721–734 (1998)

    Google Scholar 

  88. T. Kozek, D.L. Vilariño, An active contour algorithm for continuous time cellular neural networks. J. VLSI Signal Process. Syst. Signal Image Video Tech. 23, 403–414 (1999)

    Google Scholar 

  89. F. Chen, H. Yu, R. Hu, X. Zeng, Deep learning shape priors for object segmentation, in CVPR, pp. 1870–1877 (2013)

    Google Scholar 

  90. T.A. Ngo, G. Carneiro, Lung segmentation in chest radiographs using distance regularized level set and deep-structured learning and inference, in ICIP, pp. 2140–2143 (2015)

    Google Scholar 

  91. X. Wu, J. Zhao, H. Wang, Face segmentation based on level set and deep learning prior shape, in 2017 10th CISP-BMEI, pp. 1–5 (2017)

    Google Scholar 

  92. C. Rupprecht, E. Huaroc, M. Baust, N. Navab, Deep active contours. arXiv preprint arXiv:1607.05074 (2016)

  93. W. Bupphawat, T. Kasetkasem, I. Kumazawa, P. Rakwatin, T. Chanwimaluang, Super-resolution land cover mapping based on deep learning and level set method, in 2017 14th International Conference on ECTI-CON, pp. 557–560 (2017)

    Google Scholar 

  94. P. Hu, B. Shuai, J. Liu, G. Wang, Deep level sets for salient object detection, in The CVPR (July 2017)

    Google Scholar 

  95. T. Ngo, Z. Lu, G. Carneiro, Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 05 (2016)

    Google Scholar 

  96. N. Singhal, S. Mukherjee, C. Perrey, Automated assessment of endometrium from transvaginal ultrasound using deep learned snake, in ISBI, pp. 283–286 (2017)

    Google Scholar 

  97. C. Cho, Y.H. Lee, S. Lee, Prostate detection and segmentation based on convolutional neural network and topological derivative, in ICIP, pp. 3071–3074 (2017)

    Google Scholar 

  98. D. Zhang, W. Zhu, H. Zhao, F. Shi, X. Chen, Automatic localization and segmentation of optical disk based on faster R-CNN and level set in fundus image, in Medical Imaging 2018: Image Processing, Houston, TX, USA, 10–15 February 2018, p. 105741U (2018)

    Google Scholar 

  99. J. Duan, J. Schlemper, W. Bai, T.J.W. Dawes, G. Bello, G. Doumou, A.M.S.M. de Marvao, D.P. O’Regan, D. Rueckert, Deep nested level sets: fully automated segmentation of cardiac MR images in patients with pulmonary hypertension. arXiv preprint arXiv:1807.10760 (2018)

  100. R. Salakhutdinov, G. Hinton, Deep Boltzmann machines, in Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, pp. 448–455 (2009)

    Google Scholar 

  101. D. Cremers, F.R. Schmidt, F. Barthel, Shape priors in variational image segmentation: convexity, lipschitz continuity and globally optimal solutions, in CVPR (June 2008)

    Google Scholar 

  102. L.J. Latecki, R. Lakamper, T. Eckhardt, Shape descriptors for non-rigid shapes with a single closed contour, in CVPR, vol. 1, pp. 424–429 (2000)

    Google Scholar 

  103. G.E. Hinton, Deep belief networks. Scholarpedia 4(5), 5947 (2009)

    Google Scholar 

  104. J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K.-I. Komatsu, M. Matsui, H. Fujita, Y. Kodera, K. Doi, Development active contour model in deep learning era: a revise and review 29 of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. (AJR) 174, 71–74 (2000)

    Google Scholar 

  105. M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vision (IJCV) 88, 303–338 (2010)

    Google Scholar 

  106. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  107. A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med. Image Anal. 18(1), pp. 50–62 (2014)

    Google Scholar 

  108. M. Everingham, S.M. Eslami, L. Gool, C.K. Williams, J. Winn, A. Zisserman, The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98–136 (2015)

    Google Scholar 

  109. J. Jeong, C. Yang, T. Kim, Geo-positioning accuracy using multiplesatellite images: IKONOS, QuickBird, and KOMPSAT-2 stereo images. Remote Sens. 7(4), 4549–4564 (2015)

    Google Scholar 

  110. K. Simonyan, A. Zisserman, Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  111. S. Alpert, M. Galun, A. Brandt, R. Basri, Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012)

    Google Scholar 

  112. M. Cheng, N.J. Mitra, X. Huang, S. Hu, Salientshape: group saliency in image collections. Visual Comput. 30(4), 443–453 (2014)

    Google Scholar 

  113. P. Radau, Y. Lu, K. Connelly, G. Paul, A. Dick, G. Wright, Evaluation framework for algorithms segmenting short axis cardiac MRI (2009)

    Google Scholar 

  114. O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, inMICCAI, vol. 9351 of LNCS, pp. 234–241 (2015)

    Google Scholar 

  115. G. Litjens et al., Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge. Med. Image Anal. 18, 359–373 (2014)

    Google Scholar 

  116. E. Decencière, X. Zhang et al., 33, 231 (2014)

    Google Scholar 

  117. M. Tang, S. Valipour, Z.V. Zhang, D. Cobzas, M. Jägersand, A deep level set method for image segmentation. arXiv preprint arXiv:1705.06260 (2017)

  118. D. Marcos, D. Tuia, B. Kellenberger, L. Zhang, M. Bai, R. Liao, R. Urtasun, Learning deep structured active contours end-to-end, in IJCV (IEEE Computer Society, 2018), pp. 8877–8885

    Google Scholar 

  119. I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations. Trans. Neural Networks 9, 987–1000 (1998)

    Google Scholar 

  120. C. Tran, T. Tran-Cong, Computation of viscoelastic ow using neural networks and stochastic simulation. Korea-Australia Rheol. J. 14, 161–174 (2002)

    Google Scholar 

  121. M. Baymani, S. Effati, H. Niazmand, A. Kerayechian, Artificial neural network method for solving the Navier-Stokes equations. Neural Comput. Appl. 26, 765–773 (2015)

    Google Scholar 

  122. L. Ladický, S. Jeong, B. Solenthaler, M. Pollefeys, M. Gross, Data-driven UID simulations using regression forests. ACM Trans. Graph. 34 (2015)

    Google Scholar 

  123. X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady ow approximation, in SIGKDD, KDD ’16 (2016)

    Google Scholar 

  124. B.V. Ginneken, T. Heimann, M. Styner, M.: 3d segmentation in the clinic: a grand challenge, in MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge (2007)

    Google Scholar 

  125. A. Suinesiaputra, B.R. Cowan et al., Left ventricular segmentation challenge from cardiac MRI: a collation study, in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, Springer, Berlin, Heidelberg, pp. 88–97 (2012)

    Google Scholar 

  126. B. Hariharan, P. Arbelaez, R. Girshick, J. Malik, Hyper-columns for object segmentation and fine-grained localization, in CVPR (2015)

    Google Scholar 

  127. S. Wang, M. Bai, G. Máttyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie, S. Fidler, R. Urtasun, Torontocity: seeing the world with a million eyes. arXiv preprint arXiv:1612.00423 (2016)

  128. T. Lin, M. Maire, S.J. Belongie, L.D. Bourdev, R.B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft COCO: common objects in context. arXiv preprint arXiv:1405.0312 (2014)

  129. T.H.N. Le, R. Gummadi, M. Savvides, Deep recurrent level set for segmenting brain tumors, in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, ed. by A.F. Frangi, J.A. Schnabel, C. Davatzikos, C. Alberola-López, G. Fichtinger (2018)

    Google Scholar 

  130. Y. Kim, S. Kim, T. Kim, C. Kim, CNN-based semantic segmentation using level set loss, in WACV, pp. 1752–1760 (2019)

    Google Scholar 

  131. B. Kim, J.C. Ye, Multiphase level-set loss for semi-supervised and unsupervised segmentation with deep learning. arXiv preprint arXiv:1904.02872 (2019)

  132. X. Chen, B.M. Williams, S.R. Vallabhaneni, G. Czanner, R. Williams, Y. Zheng, Learning active contour models for medical image segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11,632–11,640 (2019)

    Google Scholar 

  133. H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, I. Ben Ayed, Boundary loss for highly unbalanced segmentation, in Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning, ed. by M.J. Cardoso, A. Feragen, B. Glocker, E. Konukoglu, I. Oguz, G. Unal, T. Vercauteren, vol. 102 of Proceedings of Machine Learning Research, (London, UK, 08–10 Jul 2019), pp. 285-296

    Google Scholar 

  134. P. Bilic aet al., The liver tumor segmentation benchmark (liTS). arXiv preprint arXiv:1901.04056 (2019)

  135. ISLES, Ischemic stroke lesion. http://www.isles-challenge.org

  136. WMH, White matter hyperintensities. http://wmh.isi.uu.nl

  137. ACDC, ACDC 2017 challenge. https://acdc.creatis.insa-lyon.fr/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hoang Ngan Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoang Ngan Le, T. et al. (2020). Active Contour Model in Deep Learning Era: A Revise and Review. In: Oliva, D., Hinojosa, S. (eds) Applications of Hybrid Metaheuristic Algorithms for Image Processing. Studies in Computational Intelligence, vol 890. Springer, Cham. https://doi.org/10.1007/978-3-030-40977-7_11

Download citation

Publish with us

Policies and ethics