Skip to main content

Motion Planning of the Cooperative Robot with Visual Markers

  • Conference paper
  • First Online:
Automation 2020: Towards Industry of the Future (AUTOMATION 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1140))

Included in the following conference series:

Abstract

In recent years numerous robotic solutions have been developed to improve production processes. However, most of the robotic arms are applied in large factories where they perform repetitive tasks supporting mass production. The complexity of programming and adapting robots for changing production is still a barrier for the application of robot arms in flexible and small-scale production. In this paper, we present the system which allows programming the robot using visual cameras and a set of visual markers. We develop a method for flexible motion planning for the cooperative robot to quickly define the trajectory of the robot in the 3D space. We present the architecture of the system, calibration method and the performance of the system. We also show how to significantly improve the detection range of the visual markers using Convolutional Neural Networks for object detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.vision.caltech.edu/bouguetj/calib_doc.

References

  1. Andersen, R.E., Hansen, E.B., Cerny, D., Madsen, S., Pulendralingam, B., Bøgh, S., Chrysostomou, D.: Integration of a skill-based collaborative mobile robot in a smart cyber-physical environment. Proc. Manuf. 11, 114–123 (2017)

    Google Scholar 

  2. Andersen, R.S., Damgaard, J.S., Madsen, O., Moeslund, T.B.: Fast calibration of industrial mobile robots to workstations using QR codes. In: IEEE International Symposium on Robotics, pp. 1–6 (2013)

    Google Scholar 

  3. Babinec, A., Jurišica, L., Hubinský, P., Duchoň, F.: Visual localization of mobile robot using artificial markers. Proc. Eng. 96(6), 1–9 (2014)

    Article  Google Scholar 

  4. Cieślak, W., Rodykow, S., Belter, D.: Teleoperation of a six-legged walking robot using a hand tracking interface. In: Silva, M.E., et al. (eds.) Human-Centric Robotics, pp. 527–536. World Scientific, Singapore (2017)

    Google Scholar 

  5. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recogn. 51, 481–491 (2016)

    Article  Google Scholar 

  6. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  7. George, L., Mazel, A.: Humanoid robot indoor navigation based on 2D bar codes: application to the NAO robot. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 329–335 (2013)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  9. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3d mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)

    Article  Google Scholar 

  10. Krupke, D., Starke, S., Einig, L., Zhang, J., Steinicke, F.: Prototyping of immersive HRI scenarios. In: Silva , M. E., et al. (eds.) Human-Centric Robotics. World Scientific, Singapore (2017)

    Google Scholar 

  11. Li, Y., Zhu, S., Yu, Y., Wang, Z.: An improved graph-based visual localization system for indoor mobile robot using newly designed markers. Int. J. Adv. Robot. Syst. 15(2), 1–15 (2018)

    Google Scholar 

  12. Mersch, D.P., Crespi, A., Keller, L.: Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340(6136), 1090–1093 (2013)

    Article  Google Scholar 

  13. Nissler, C., Büttner, S., Marton, Z.-C., Beckmann, L., Thomas, U.: Evaluation and improvement of global pose estimation with multiple AprilTags for industrial manipulators. In: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2016)

    Google Scholar 

  14. Olson, E.: Apriltag: a robust and flexible visual fiducial system. In: IEEE International Conference on Robotics and Automation, pp. 3400–3407 (2011)

    Google Scholar 

  15. Ouaviani, E., Pavan, A., Bottazzi, M., Brunelli, E., Caselli, F., Guerrero, M.: A common image processing framework for 2d barcode reading. In: 7th International Conference on Image Processing and its Applications, Conference Publishing, vol. 2, no. 465, pp. 652–655 (1999)

    Google Scholar 

  16. Rostkowska, M., Skrzypczyński, P.: A practical application of QR-codes for mobile robot localization in home environment. In: Silva, M.E., et al. (eds.) Human-Centric Robotics, pp. 311–318. World Scientific, Singapore (2017)

    Google Scholar 

  17. Silaghi, H., Rohde, U., Spoial, V., Silaghi, A., Gergely, E., Nagy, Z.: Voice command of an industrial robot in a noisy environment. In: International Symposium on Fundamentals of Electrical Engineering (ISFEE), pp. 1–5 (2014)

    Google Scholar 

  18. Pires, J.N.: Experiments on commanding an industrial robot using the human voice. Ind. Robot: Int. J. 32(6), 5–11 (2005)

    MathSciNet  Google Scholar 

  19. Wang, J., Olson, E.: AprilTag 2: efficient and robust fiducial detection. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4193–4198 (2016)

    Google Scholar 

  20. Wilson, F., Cueva, C., Hugo, S., Torres, M., Kern, M.J.: 7 DOF industrial robot controlled by hand gestures using microsoft kinect v2. In: IEEE 3rd Colombian Conference on Automatic Control, pp. 1–6 (2017)

    Google Scholar 

  21. Xavier, R.S., da Silva, B.M.F., Gonzalves, L.M.G.: Accuracy analysis of augmented reality markers for visual mapping and localization. In: Workshop of Computer Vision, pp. 73–77 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund (ERDF) Wielkopolska Regional Operational Programme for 2014–2020, Measure 1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Belter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spławski, M. et al. (2020). Motion Planning of the Cooperative Robot with Visual Markers. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-40971-5_19

Download citation

Publish with us

Policies and ethics