Skip to main content

PerbDroid: Effective Malware Detection Model Developed Using Machine Learning Classification Techniques

  • Chapter
  • First Online:
A Journey Towards Bio-inspired Techniques in Software Engineering

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 185))

Abstract

This chapter introduces PerbDroid—a framework to detect malware from Android smartphones. To address the issues of malware detection through a broad set of apps, researchers have recently started to identify the features which helps to detect malware from apps. The proposed framework is based on features selection techniques which help us to develop a useful model for malware detection. We collected a data set of 2,00,000 Android apps from distinct sources and extracted permissions and API calls from them (consider as features in this study). Further, features are selected by using six different feature ranking approaches (i.e., Gain Ratio, OneR feature evaluation, Chi-squared test, Information gain feature evaluation, Principal Component Analysis (PCA) and Logistic regression analysis) to develop the model for malware detection. We evaluated several machine learning algorithms and feature selection methods in identifying the combination that gives the foremost performance to detect malware from real-world apps. Empirical outcomes illustrate that the proposed framework is useful to detect malware from smartphones mainly and in particularly from Android.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide.

  2. 2.

    https://securelist.com/mobile-malware-evolution-2018/89689/.

  3. 3.

    https://developer.android.com/guide/topics/permissions/normal-permissions.html.

  4. 4.

    https://developer.android.com/guide/topics/permissions/requesting.html.

  5. 5.

    https://play.google.com/store?hl=en.

  6. 6.

    http://www.appchina.com/.

  7. 7.

    http://www.hiapk.com/.

  8. 8.

    http://andrdoid.d.cn/.

  9. 9.

    http://www.mumayi.com/.

  10. 10.

    http://www.gfan.com/.

  11. 11.

    http://android.pandaapp.com/.

  12. 12.

    http://slideme.org/.

  13. 13.

    https://www.microsoft.com/en-in/windows/comprehensive-security.

  14. 14.

    https://www.virustotal.com/.

  15. 15.

    See footnote 14.

  16. 16.

    http://sanddroid.xjtu.edu.cn:8080.

References

  1. https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf

  2. Allix, K., Bissyandé, T.F., Jérome, Q., Klein, J., Le Traon, Y.: Empirical assessment of machine learning-based malware detectors for android. Empir. Softw. Eng. 21(1), 183–211 (2016)

    Article  Google Scholar 

  3. Narudin, F.A., Feizollah, A., Anuar, N.B., Gani, A.: Evaluation of machine learning classifiers for mobile malware detection. Soft Comput. 20(1), 343–357 (2016)

    Article  Google Scholar 

  4. Afifi, F., Anuar, N.B., Shamshirband, S., Choo, K.K.R.: DyHAP: dynamic hybrid ANFIS-PSO approach for predicting mobile malware. PloS One 11(9), e0162627 (2016)

    Article  Google Scholar 

  5. Ab Razak, M.F., Anuar, N.B., Salleh, R., Firdaus, A.: The rise of “malware”: bibliometric analysis of malware study. J. Netw. Comput. Apps 75, 58–76 (2016)

    Article  Google Scholar 

  6. Aafer, Y., Du, W., Yin, H.: Droidapiminer: mining api-level features for robust malware detection in android. In: International Conference on Security and Privacy in Communication Systems, pp. 86–103. Springer, Cham (2013)

    Google Scholar 

  7. Talha, K.A., Alper, D.I., Aydin, C.: APK auditor: permission-based android malware detection system. Digit. Investig. 13, 1–14 (2015)

    Article  Google Scholar 

  8. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J.: Dendroid: a text mining approach to analyzing and classifying code structures in android malware families. Expert. Syst. Appl. 41(4), 1104–1117 (2014)

    Article  Google Scholar 

  9. Firdaus, A., Anuar, N.B., Ab Razak, M.F., Sangaiah, A.K.: Bio-inspired computational paradigm for feature investigation and malware detection: interactive analytics. Multimed. Tools Appl. 1–37 (2017)

    Google Scholar 

  10. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)

    Article  Google Scholar 

  11. Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: Droidmat: android malware detection through manifest and api calls tracing. In: 2012 Seventh Asia Joint Conference on Information Security, pp. 62–69. IEEE (2012)

    Google Scholar 

  12. Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M.S., Bharmal, A.: AndroSimilar: robust statistical feature signature for Android malware detection. In: Proceedings of the 6th International Conference on Security of Information and Networks, pp. 152–159. ACM (2013)

    Google Scholar 

  13. Wu, S., Wang, P., Li, X., Zhang, Y.: Effective detection of android malware based on the usage of data flow APIs and machine learning. Inf. Softw. Technol. 75, 17–25 (2016)

    Article  Google Scholar 

  14. Qiao, M., Sung, A. H., Liu, Q.: Merging permission and API features for android malware detection. In: 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 566–571. IEEE (2016)

    Google Scholar 

  15. Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., Conti, M.: Detecting android malware leveraging text semantics of network flows. IEEE Trans. Inf. Forensics Secur. 13(5), 1096–1109 (2017)

    Article  Google Scholar 

  16. Zhu, H.J., You, Z.H., Zhu, Z.X., Shi, W.L., Chen, X., Cheng, L.: DroidDet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272, 638–646 (2018)

    Article  Google Scholar 

  17. Vinayakumar, R., Soman, K.P., Poornachandran, P., Sachin Kumar, S.: Detecting android malware using long short-term memory (LSTM). J. Intell. Fuzzy Syst. 34(3), 1277–1288 (2018)

    Article  Google Scholar 

  18. Shen, F., Del Vecchio, J., Mohaisen, A., Ko, S.Y., Ziarek, L.: Android malware detection using complex-flows. IEEE Trans. Mob. Comput. (2018)

    Google Scholar 

  19. Huang, C.Y., Tsai, Y.T., Hsu, C.H.: Performance evaluation on permission-based detection for android malware. In: Advances in Intelligent Systems and Applications, vol. 2, pp. 111–120. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  20. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Ãlvarez, G.: Puma: Permission usage to detect malware in android. In: International Joint Conference CISISâ12-ICEUTE 12-SOCO 12 Special Sessions, pp. 289–298. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  21. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: Towards formal analysis of the permission-based security model for android. In: Fifth International Conference on Wireless and Mobile Communications, 2009. ICWMC’09, pp. 87–92. IEEE (2009)

    Google Scholar 

  22. Tang, W., Jin, G., He, J., Jiang, X.: Extending android security enforcement with a security distance model. In: 2011 International Conference on Internet Technology and Applications (iTAP), pp. 1–4. IEEE (2011)

    Google Scholar 

  23. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification. In: Proceedings of the 16th ACM conference on Computer and Communications Security, pp. 235–245. ACM (2009)

    Google Scholar 

  24. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011)

    Google Scholar 

  25. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “Andromaly”: a behavioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012)

    Article  Google Scholar 

  26. Huang, W., Dong, Y., Milanova, A., Dolby, J.: Scalable and precise taint analysis for android. In: Proceedings of the 2015 International Symposium on Software Testing and Analysis, pp. 106–117. ACM (2015)

    Google Scholar 

  27. Mas’ud, M.Z., Sahib, S., Abdollah, M.F., Selamat, S.R., Yusof, R.: Analysis of features selection and machine learning classifier in android malware detection. In: 2014 International Conference on Information Science & Applications (ICISA), pp. 1–5. IEEE (2014)

    Google Scholar 

  28. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: A multi-view context-aware approach to android malware detection and malicious code localization. Empir. Softw. Eng. 1–53 (2018)

    Google Scholar 

  29. Azmoodeh, A., Dehghantanha, A., Choo, K.K.R.: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. (2018)

    Google Scholar 

  30. Kadir, A.F.A., Stakhanova, N., Ghorbani, A.A.: Android botnets: What urls are telling us. In: International Conference on Network and System Security, pp. 78-91. Springer, Cham (2015)

    Google Scholar 

  31. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109. IEEE (2012)

    Google Scholar 

  32. Plackett, R.L.: Karl Pearson and the chi-squared test. Int. Stat. Rev./Revue Internationale de Statistique 59–72 (1983)

    Google Scholar 

  33. Novakovic, J.: The impact of feature selection on the accuracy of naïve bayes classifier. In: 18th Telecommunications Forum TELFOR, vol. 2, pp. 1113–1116 (2010)

    Google Scholar 

  34. Camargo Cruz, A.E., Ochimizu, K.: Towards logistic regression models for predicting fault-prone code across software projects. In: Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, pp. 460–463. IEEE Computer Society (2009)

    Google Scholar 

  35. Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-induced risk in android applications for malicious application detection. IEEE Trans. Inf. Forensics Secur. 9(11), 1869–1882 (2014)

    Article  Google Scholar 

  36. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.E.R.T.: Drebin: effective and explainable detection of android malware in your pocket. In: Ndss, vol. 14, pp. 23–26 (2014)

    Google Scholar 

  37. Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-sec: deep learning in android malware detection. In: ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 371–372. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Mahindru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahindru, A., Sangal, A.L. (2020). PerbDroid: Effective Malware Detection Model Developed Using Machine Learning Classification Techniques. In: Singh, J., Bilgaiyan, S., Mishra, B., Dehuri, S. (eds) A Journey Towards Bio-inspired Techniques in Software Engineering. Intelligent Systems Reference Library, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-030-40928-9_7

Download citation

Publish with us

Policies and ethics