Skip to main content

Modeling Guidelines for Component-Based Supervisory Control Synthesis

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12018))

Included in the following conference series:

Abstract

Supervisory control theory provides means to synthesize supervisors from a model of the uncontrolled plant and a model of the control requirements. Currently, control engineers lack experience with using automata for this purpose, which results in low adaptation of supervisory control theory in practice. This paper presents three modeling guidelines based on experience of modeling and synthesizing supervisors of large-scale infrastructural systems. Both guidelines see the model of the plant as a collection of component models. The first guideline expresses that independent components should be modeled as asynchronous models. The second guideline expresses that physical relationships between component models can be easily expressed with extended finite automata. The third guideline expresses that the input-output perspective of the control hardware should be used as the abstraction level. The importance of the guidelines is demonstrated with examples from industrial cases.

Supported by Rijkswaterstaat, part of the Dutch Ministry of Infrastructure and Water Management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balemi, S.: Control of discrete event systems: theory and application. Ph.D. thesis, Swiss Federal Institue of Technology Zurich, Zurich (1992)

    Google Scholar 

  2. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-68612-7

    Book  MATH  Google Scholar 

  3. Fabian, M., Hellgren, A.: PLC-based implementation of supervisory control for discrete event systems. In: 37th IEEE Conference on Decision and Control, vol. 3, pp. 3305–3310 (1998). https://doi.org/10.1109/CDC.1998.758209

  4. Fabian, M., Fei, Z., Miremadi, S., Lennartson, B., Åkesson, K.: Supervisory control of manufacturing systems using extended finite automata. In: Campos, J., Seatzo, C., Xie, X. (eds.) Formal Methods in Manufacturing, pp. 295–314. Taylor & Francis Inc., Industrial Information Technology (2014)

    Google Scholar 

  5. Feng, L., Wonham, W.M.: Nonblocking coordination of discrete-event systems by control-flow nets. In: 46th IEEE Conference on Decision and Control, pp. 3375–3380. https://doi.org/10.1109/CDC.2007.4434160

  6. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J. Control Optim. 48(3), 1914–1938. https://doi.org/10.1137/070695526

  7. Göbe, F., Ney, O., Kowalewski, S.: Reusability and modularity of safety specifications for supervisory control. In: 21st IEEE International Conference on Emerging Technologies and Factory Automation, pp. 1–8 (2016). https://doi.org/10.1109/ETFA.2016.7733498

  8. Gonzalez, A.G.C., Alves, M.V.S., Viana, G.S., Carvalho, L.K., Basilio, J.C.: Supervisory control-based navigation architecture: a new framework for autonomous robots in Industry 4.0 environments. IEEE Trans. Ind. Inform. 14(4), 1732–1743 (2018). https://doi.org/10.1109/TII.2017.2788079

    Article  Google Scholar 

  9. Goorden, M.A., Fabian, M.: No synthesis needed, we are alright already. In: 15th IEEE International Conference on Automation Science and Engineering, pp. 195–202. https://doi.org/10.1109/COASE.2019.8843071

  10. Goorden, M.A., van de Mortel-Fronczak, J.M., Etman, L.F.P., Rooda, J.E.: DSM-based analysis for the recognition of modeling errors in supervisory controller design. In: 21st International Dependency and Structure Modeling Conference, pp. 127–135 (2019). https://doi.org/10.35199/dsm2019.7

  11. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink, W.J., Rooda, J.E.: The impact of requirement splitting on the efficiency of supervisory control synthesis. In: Larsen, K.G., Willemse, T. (eds.) FMICS 2019. LNCS, vol. 11687, pp. 76–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27008-7_5

    Chapter  Google Scholar 

  12. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink, W.J., Rooda, J.E.: Structuring multilevel discrete-event systems with dependency structure matrices. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.292811. Early access

    Article  Google Scholar 

  13. Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput. Program. 55(1), 161–183. https://doi.org/10.1016/j.scico.2004.05.014

  14. Grigorov, L., Butler, B.E., Cury, J.E.R., Rudie, K.: Conceptual design of discrete-event systems using templates. Discrete Event Dyn. Syst. 21(2), 257–303 (2011). https://doi.org/10.1007/s10626-010-0089-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Komenda, J., Masopust, T., van Schuppen, J.H.: Control of an engineering-structured multilevel discrete-event system. In: 13th International Workshop on Discrete Event Systems, pp. 103–108 (2016)

    Google Scholar 

  16. Ma, C., Wonham, W.: Nonblocking Supervisory Control of State Tree Structures. Lecture Notes in Control and Information Sciences, vol. 317. Springer, Heidelberg (2005). https://doi.org/10.1007/b105592

    Book  MATH  Google Scholar 

  17. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J., Rooda, J.E.: Coordination of resources using generalized state-based requirements. In: 10th International Workshop on Discrete Event Systems, pp. 300–305 (2010)

    Google Scholar 

  18. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional nonblocking verification of extended finite-state machines. Discrete Event Dyn. Syst. 26(1), 33–84 (2016). https://doi.org/10.1007/s10626-015-0217-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Moormann, L., Maessen, P., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.: Design of a tunnel supervisory controller using synthesis-based engineering (2020). Accepted for ITA-AITES World Tunnel Congress

    Google Scholar 

  20. Ouedraogo, L., Kumar, R., Malik, R., Åkesson, K.: Nonblocking and safe control of discrete-event systems modeled as extended finite automata. IEEE Trans. Autom. Sci. Eng. 8(3), 560–569 (2011). https://doi.org/10.1109/TASE.2011.2124457

    Article  Google Scholar 

  21. Pena, P.N., Cury, J.E.R., Lafortune, S.: Verification of nonconflict of supervisors using abstractions. IEEE Trans. Autom. Control 54(12), 2803–2815. https://doi.org/10.1109/TAC.2009.2031730

  22. de Queiroz, M.H., Cury, J.E.R.: Modular supervisory control of large scale discrete event systems. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems. SECS, vol. 569, pp. 103–110. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-4493-7_10

    Chapter  MATH  Google Scholar 

  23. Ramadge, P.J.G., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

    Article  MathSciNet  Google Scholar 

  24. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. IEEE 77(1), 81–98 (1989)

    Article  Google Scholar 

  25. Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: an emerging approach for modern systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(1), 101–111 (2012). https://doi.org/10.1109/TSMCC.2011.2106495

  26. Reijnen, F.F.H., Erens, T.R., van de Mortel-Fronczak, J.M., Rooda, J.E.: Supervisory control synthesis for safety PLCs (2020). Submitted to International Workshop on Discrete Event Systems

    Google Scholar 

  27. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Rooda, J.E.: Application of dependency structure matrices and multilevel synthesis to a production line. In: 2nd IEEE Conference on Control Technology and Applications, pp. 458–464 (2018). https://doi.org/10.1109/CCTA.2018.8511449

  28. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.: Supervisory control synthesis for a waterway lock. In: 1st IEEE Conference on Control Technology and Applications, pp. 1562–1568 (2017). https://doi.org/10.1109/CCTA.2017.8062679

  29. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.: Supervisory control synthesis for a lock-bridge combination (2019). Submitted to Discrete Event Dynamic Systems

    Google Scholar 

  30. van der Sanden, L.J.: Performance analysis and optimization of supervisory controllers. Ph.D. thesis, Eindhoven University of Technology (2018)

    Google Scholar 

  31. van der Sanden, L.J., et al.: Modular model-based supervisory controller design for wafer logistics in lithography machines. In: 18th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (2015)

    Google Scholar 

  32. Skoldstam, M., Åkesson, K., Fabian, M.: Modeling of discrete event systems using finite automata with variables. In: 46th IEEE Conference on Decision and Control, pp. 3387–3392 (2007). https://doi.org/10.1109/CDC.2007.4434894

  33. Su, R., van Schuppen, J.H., Rooda, J.E.: Synthesize nonblocking distributed supervisors with coordinators. In: 17th Mediterranean Conference on Control and Automation, pp. 1108–1113 (2009). https://doi.org/10.1109/MED.2009.5164694

  34. Swartjes, L., van Beek, D.A., Fokkink, W.J., van Eekelen, J.A.W.M.: Model-based design of supervisory controllers for baggage handling systems. Simul. Model. Pract. Theory 78, 28–50 (2017). https://doi.org/10.1016/j.simpat.2017.08.005

    Article  Google Scholar 

  35. Swartjes, L.: Model-based design of baggage handling systems. Ph.D. thesis, Eindhoven University of Technology (2018)

    Google Scholar 

  36. Theunissen, R.J.M., Petreczky, M., Schiffelers, R.R.H., van Beek, D.A., Rooda, J.E.: Application of supervisory control synthesis to a patient support table of a magnetic resonance imaging scanner. IEEE Trans. Autom. Sci. Eng. 11(1), 20–32 (2013)

    Article  Google Scholar 

  37. Wonham, W.M., Ramadge, P.J.G.: Modular supervisory control of discrete-event systems. Math. Control Signals Syst. 1(1), 13–30 (1988)

    Article  MathSciNet  Google Scholar 

  38. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems, 1st edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-319-77452-7

    Book  MATH  Google Scholar 

  39. Zaytoon, J., Carre-Meneatrier, V.: Synthesis of control implementation for discrete manufacturing systems. Int. J. Prod. Res. 39(2), 329–345 (2001). https://doi.org/10.1080/00207540010002388

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Maria Angenent, Bert van der Vegt, and Han Vogel from Rijkswaterstaat for their feedback on the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Fokkink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goorden, M., van de Mortel-Fronczak, J., Reniers, M., Fokkink, W., Rooda, J. (2020). Modeling Guidelines for Component-Based Supervisory Control Synthesis. In: Arbab, F., Jongmans, SS. (eds) Formal Aspects of Component Software. FACS 2019. Lecture Notes in Computer Science(), vol 12018. Springer, Cham. https://doi.org/10.1007/978-3-030-40914-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40914-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40913-5

  • Online ISBN: 978-3-030-40914-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics