Updating Case Studies and Practical Insights

Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter presents three industrial-scale applications of the updating framework introduced in Chap.  3. The first application in a gold mine applies ball mill monitoring data to continuously update the grade control model in terms of the Bond Work Index prediction. A more precise characterization of the input material in the comminution process allows for a more precise adjustment of control parameters. The second example demonstrates how coal quality data from a cross-belt online sensor are used in an open-pit mine to locally improve the coal quality model in real time. The third application focuses on the mineralogical characterization of a polymetallic ore vein in an underground mining operation. Data from hyperspectral imaging (Donner et al. 2019) and point sensor data using Laser-Induced Breakdown Spectroscopy (LIBS) or X-Ray Fluorescence (XRF) technologies (Desta and Buxton 2019) are used to continuously improve the prediction of vein geometry and the local mineral composition. All three case studies present industrial-scale results with a technology readiness level TRL 6 defined according to NASA’s definition as the “System/sub-system model demonstration in an operational environment.” This Chapter concludes with a summary of lessons learned and practical aspects when implementing a continuous feedback loop.


  1. G.R. Ballantyne, M.S. Powell, Benchmarking comminution energy consumption for the processing of copper and gold ores. Miner. Eng. 65, 109–114 (2014)CrossRefGoogle Scholar
  2. J. Benndorf, R. Donner, M. Lindig, O.M. Lohsträter, H. Rosenberg, S. Asmus, W. Naworyta, M.W.N. Buxton, Real-time reconciliation and optimization in large open pit coal mines (RTRO-Coal)–Final report. European Commission, Directorate-General for Research and Innovation, Directorate D-Industrial Technologies, 112 p. (2019).
  3. M. Dalm, M. Sandtkem, Geochemical mapping of drill core samples using a combined LIBS and XRF core scanning system, in Real Time Mining-2nd International Raw Materials Extraction Innovation Conference in Freiberg, Germany, ed. by J. Benndorf (2019). ISBN 9783938390429Google Scholar
  4. F.S. Desta, M.W.N. Buxton, Chemometric analysis of mid-wave infrared spectral reflectance data for sulphide ore discrimination. Math Geosci 51, 877 (2019). Scholar
  5. R. Donner, M. Rabel, I. Scholl, A. Ferrein, M. Donner, A. Geier, A. John, C. Köhler, S. Varga, Die Extraktion bergbaulich relevanter Merkmale aus 3D-Punktwolken eines untertagetauglichen mobilen Multisensorsystems, in Proceedings Geomonitoring 2019 (2019), pp. 91–110.
  6. A. Knipfer, Decision support for operating lignite mines with high geological variability based on mine surveying and production monitoring. Bergbau Zeitschrift für Rohstoffgewinnung Energie Umwelt 4, 148–152 (2012). (In German)Google Scholar
  7. O. Leeuwenburgh, G. Evensen, L. Bertino, The impact of ensemble filter definition on the assimilation of temperature profiles in the tropical Pacific. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Ocean. 131(613), 3291–3300 (2005)Google Scholar
  8. A. Lynch, A. Mainza, S. Morell, Ore comminution measurement techniques, in Comminution Handbook, ed. by A. Lynch. Spectrum Series, vol. 21 (The Australian Institute of Mining and Metallurgy, Carlton Victoria, Australia, 2015), pp. 43–60Google Scholar
  9. C. Paduraru, R. Dimitrakopoulos, Responding to new information in a mining complex: fast mechanisms using machine learning. Min. Technol., 1–14 (2019)Google Scholar
  10. A. Prior, J. Benndorf, U. Müller, Resource and grade control model updating for underground mining production settings. Math. Geosci. (2020a) (in print)Google Scholar
  11. A. Prior, R. Tolosana-Delgado, K.G. van den Boogaart, J. Benndorf, Resource model updating for compositional geometallurgical variables. Math. Geosci. (2020b) (accepted)Google Scholar
  12. H. Rosenberg, Detection of materials and deposits as a basis for innovative operations management systems employed as part of opencast mine process optimizations. World Min. Clausthal Zellerfeld 59, 173–180 (2007)Google Scholar
  13. M. Stockmann, D. Hirsch, J. Lippmann-Pipke, H. Kupsch, Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany. Environ. Earth Sci. 68(4), 1153–1168 (2013)CrossRefGoogle Scholar
  14. S. Varga, Multisensorsystem für die automatisierte Detektion von Gangerzlagerstätten und seltenen Erden in einer Mine. Schriftenreihe des Institutes für Markscheidewesen und Geodäsie der TU Bergakademie Freiberg, Heft 2016-1 (Wagner Digitaldruck und Medien GmbH, Nossen, 2016), pp. 276–283. ISBN 978-3-938390-17-7Google Scholar
  15. T. Wambeke, D. Elder, A. Miller, J. Benndorf, R. Peattie, Real-time reconciliation of a geometallurgical model based on ball mill performance measurements–a pilot study at the Tropicana gold mine. Min. Technol. (2018). Scholar
  16. M. Wortley, E. Nozawa, K.J. Riihioja, Metso SmartTag–the next generation and beyond, in 35th APCOM Symposium (2011, September), pp. 24–30Google Scholar
  17. C. Yüksel, J. Benndorf, Performance analysis of continuous resource model updating in lignite production, In Valencia Geostatistics 2016, eds. by J. Gómez-Hernández, J. Rodrigo-Ilarri, M.E. Rodrigo-Clavero, E Cassiraga, J.A. Vargas-Guzmán, vol. 2 (Springer, 2016), page 65 ffGoogle Scholar
  18. C. Yüksel, J. Benndorf, M. Lindig, O. Lohsträter, Updating the coal quality parameters in multiple production benches based on combined material measurement: a full case study. Int. J. Coal Sci. Technol. 4(2), 159–171 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mine Surveying and GeodesyUniversity of Technology Bergakademie FreibergFreibergGermany

Personalised recommendations